

Proceedings

1st International Workshop on Security and
Privacy for the Internet-of-Things [IoTSec]

Co-located with the ACM/IEEE International Conference on
Internet of Things Design and Implementation (IoTDI), 2018

Orlando, Florida
April 17, 2018

Table of Contents

1. Message from the chairs

2. Workshop organizers and program committee

3. List of additional reviewers

4. Keynote details

5. Technical papers

Message from the chairs
This is the first international workshop on security and privacy for the internet of things and it is
co-located with the ACM/IEEE conference on the Internet of Things design and implementation.
This edition takes places in Orlando, Florida, USA. The technical program includes thirteen peer
reviewed papers and a keynote talk by Prof. David Nicol from the University of Illinois at Urbana-
Champaign.

The aim of this workshop is to bring together researchers are practitioners who are working on
the growing area of IoT. With the advent of so many IoT-enabled devices and services, it
becomes imperative that proper security and privacy solutions are in place. Furthermore, an
examination of the legal and ethical issues is also important since many of these devices/services
are found in homes, hospitals, public areas, industrial settings, etc. We hope to foster a
community that will look at these topics from a variety of perspectives.

Even though this is the first iteration of this workshop, we received a large amount of interest.
The final thirteen papers were chosen from 22 initial submissions (which gives us close to 60%
acceptance rate). Each paper was received four reviews. We are glad to present this high-quality
program to the research community.

IoTSec owes its existence to a variety of people. We would like to thank the organizing committee
of IoTDI and in particular Chenyang Lu, Tarek Abdelzaher, Olaf Landseidel, Hui Lei, Lu Su and
Iain Bate. We would also like to thank the technical program committee members and the various
reviewers who made this program successful and of high quality. Finally, we would like to thank
the authors and participants of the workshop without whom this event would not be successful.

We hope that you will enjoy the IoTSec 2018 program and that it will foster many new research
directions and collaborations.

Sibin Mohan Elaine Shi
University of Illinois at Urbana-Champaign Cornell University

Workshop Organizers and Program Committee
Program Chairs

Sibin Mohan, University of Illinois at Urbana-Champaign
Elaine Shi, Cornell University

Technical Program Committee

Sean Smith, Dartmouth College
Gedare Bloom, Howard University
Gabriela Ciocarlie, SRI International
Miroslav Pajic, Duke University
Bryan Ward, MIT Lincoln Laboratory
Dawn Schrader, Cornell University
Daniel Mosse, University of Pittsburgh
Mu Zhang, Cornell University
Siddharth Garg, NYU
Rakesh Kumar, University of Illinois at Urbana-Champaign
Rakesh Bobba, Oregon State University
Ramya Raghavendra, IBM Research
Man-Ki Yoon, Yale University
Henry Duwe, Iowa State University
Negin Salajageh, Visa Research
Adam Bates, University of Illinois at Urbana-Champaign
Bo Li, University of California, Berkeley
Ing-Ray Chen, Virginia Tech

Web Chair

Monowar Hasan, University of Illinois at Urbana-Champaign

Additional Reviewers

Ioannis Agadakos, Stevens Institute of Technology
Mahsa Saeidi, Oregon State University
Arezoo Rajabi, Oregon State University
Karim Eldefrawy, University of California, Irvine
Henrique Potter, University of Pittsburgh
Akshith Gunasekaran, Oregon State University
Tancrède Lepoint, SRI
Richard Skowyra, Massachusetts Institute of Technology
Akshith Gunasekaran, Oregon State University
Vedanth Narayanan, Oregon State University
Yogita Garud, Oregon State University
Bogdan Copos, University of California, Davis

Keynote: The Role of Modeling and
Simulation in IoT Security Research

Abstract
Many of the challenges of security in IOT relate to scale. How do we discover what scaling
problems exist? How do we evaluate solutions to the problems we foresee? While measurement
of many IoT devices concurrently may be possible, what sense can we make of the
measurements when so much of the IoT infrastructure is opaque to us? There is a role for
modeling and simulation in assessing security problems and solutions. This talk highlights the
opportunities and identifies the associated challenges.

Speaker Biography

David M. Nicol is the Franklin W. Woeltge Professor of Electrical and
Computer Engineering at the University of Illinois at Urbana‐Champaign,
and Director of the Information Trust Institute (iti.illinois.edu). He is PI for
two national centers for infrastructure resilience: the DHS‐funded Critical
Infrastructure Reliance Institute (ciri.illinois.edu), and the DoE funded Cyber
Resilient Energy Delivery Consortium (cred‐c.org); he is also PI for the
Boeing Trusted Software Center, and co-PI for the NSA‐funded Science of
Security lablet. Prior to joining UIUC in 2003 he served on the faculties of
the computer science departments at Dartmouth College (1996‐2003), and
before that the College of William and Mary (1987‐1996). He has won

recognition for excellence in teaching at all three universities. His research interests include trust
analysis of networks and software, analytic modeling, and parallelized discrete‐event simulation,
research which has led to the founding of startup company Network Perception, and election as
Fellow of the IEEE and Fellow of the ACM. He is the inaugural recipient of the ACM SIGSIM
Outstanding Contributions award, and co‐author of the widely used undergraduate textbook
“Discrete‐Event Systems Simulation”.

Technical Papers

Session I: Attacks and Defenses

1. An Overview of Vulnerabilities of Voice Controlled Systems
Yuan Gong and Christian Poellabauer.

2. Control-hijacking Vulnerabilities in IoT Firmware: A Brief Survey
Abhinav Mohanty, Islam Obaidat, Fadi Yilmaz and Meera Sridhar.

3. Cognitive Enhancement as an Attack Surface
Daniel Sanchez and Bogdan Copos.

4. SDN-based In-network Honeypot: Preemptively Disrupt and Mislead Attacks in IoT
Network
Hui Lin.

5. Hey, You, Keep away from My Device: Remotely Implanting a Virus Expeller to Defeat
Mirai on IoT Devices.
Chen Cao, Le Guan, Peng Liu, Neng Gao, Jingqiang Lin and Ji Xiang.

Session II: Causality, Redaction and Legal frameworks

6. Butterfly Effect: Causality from Chaos in the IoT
Ioannis Agadakos, Gabriela Ciocarlie, Bogdan Copos, Tancrede Lepoint, Ulf Lindqvist and
Michael Locasto.

7. Toward an Extensible Framework for Redaction
Soteris Demetriou, Nathaniel D. Kaufman, Jonah Baim, Adam J. Goldsher and Carl A.
Gunter.

8. Implicit Authentication in Wearables Using Multiple Biometrics
Sudip Vhaduri and Christian Poellabauer.

9. A Multinational Legal Examination of Individual Security Risks Related to the Internet
of Things
Andrew Weyl and George Williamson.

Session III: IoT Security Architectures

10. A Comparison of Data Streaming Frameworks for Anomaly Detection in Embedded
Systems
Giovani Gracioli, Murray Dunne and Sebastian Fischmeister.

11. A secure IoT architecture for streaming data analysis and anomaly detection
Safa Boudabous, Stephan Clémençon, Ons Jelassi and Mariona Caros Roca.

12. Anomaly-based Intrusion Detection of IoT Device Sensor Data using Provenance
Graphs
Ebelechukwu Nwafor, Andre Campbell and Gedare Bloom.

13. SIOTOME: An Edge-ISP Collaborative Architecture for IoT Security
Hamed Haddadi, Vassilis Christophides, Renata Cruz Teixeira, Kenjiro Cho, Shigeya Suzuki
and Adrian Perrig.

This page intentionally left blank. The technical papers follow on the next page.

Toward an Extensible Framework for Redaction
Soteris Demetriou⇤, Nathaniel D. Kaufman⇤, Jonah Baim⇤, Adam J. Goldsher⇤ and Carl A. Gunter⇤

⇤University of Illinois at Urbana-Champaign
{sdemetr2, nkaufma2, baim2, goldshe2, cgunter}@illinois.edu

Abstract—

Data is being created at an increasing rate by sources like

the IoT devices, social media, and camera monitors. This data

frequently includes sensitive information that parties must redact

to adhere to laws and user privacy policies. At the same time,

there is steady progress on recognizers that find latent information

within rich data streams, and thereby create fresh privacy risks.

In this work, we advocate the idea of developing a modular,

extensible toolkit based on decognizers which are information

hiding functions derived from recognizers that redact sensitive

information. We offer steps towards an abstract conceptual

framework and compositional techniques and discuss require-

ments for such a toolkit.

I. INTRODUCTION

With the advent of IoT, digital information is being gen-
erated and collected at an unprecedented pace. These rich
streams of data entail challenges for dissemination that re-
spects the privacy of individuals. For example, in social
media there is a threat of privacy leakage caused by uploaded
images because individuals’ faces within the image are au-
tomatically recognized and shared as the image is dissem-
inated across friends, and friends of friends [1]. Similarly,
government data—collected through cameras in police vehi-
cle dashboards (dashcams), and, increasingly, body cameras
(bodycams) mounted on the uniforms of police officers—is
subjected to public disclosure requests as indicated in the
Freedom of Information Act (FOIA).

Controlling access to such rich media streams becomes
challenging because they carry incidental information which
can be hard to predict a priori. As the technology evolves,
latent information becomes identifiable by an adversary within
primitive objects. For example, face recognition technology
allows one to infer the presence of targeted people in an
otherwise innocuous image or video, while speech recognition
advances, allow one to fingerprint a person from an audio
stream. A good example of latent information concerns the
genome of James Watson, who asked that the value of his
ApoE gene be redacted because of its connection to dementia.
Subsequently, research in genomics advanced to the point that
this information could be inferred from the values of other
(exposed) genes [2]. Previous works rely on empirically com-
bining recognition technologies based on current knowledge
and expectations. However, some might lead to significant
information leakage [3], while others are specific to a media
stream [4], [5], [6], [7], [1]. Other works focused on designing
frameworks for controlling access to such data by third-party
apps [8], [9]. While these might offer practical solutions on
their application domains, we observe a lack of theoretical

foundations upon which we can confidently built and combine
redaction technology in a highly evolving IoT space.

To keep pace with rapid recognition advancements, alter-
natively one could choose a close follower approach: observe
when a type of leak happens and take steps to prevent similar
future leaks. For example, Google Street View added a licence
plate redaction technology to address privacy concerns about
identifying vehicles in street view images. In this work, we
make a proposal and the first step towards such a close
follower solution. This will provide the theory and tools to
construct redaction functions—which we call decognizers—
directly stemming from newly introduced recognizer technol-
ogy. Towards this end, we develop an abstract conceptual
framework to formally describe such transformations from
recognizers to decognizers. We further define basic techniques
to combine recognizers in ways which allow the construction
of correct decognizers (Section II). We envision this to be
translated in practice in the form of a modular, extensible,
open-sourced toolkit of functions to recognize and redact
sensitive data in rich media systems. We illustrate this with
a prototype implementation of an extensible redaction toolkit
and its application to assorted redaction scenarios (Section III).
Finally, we highlight key issues of both the theoretical frame-
work and the toolkit (Section IV).

II. CONCEPT

Let us consider a simple conceptual model of a modular and
extensible toolkit for managing the redaction of sensitive infor-
mation from diverse media types. The key unit of information
is a record. We denote records with r. Records can be of many
types, including documents, images, audio recordings, videos,
tables, and so on. To build the conceptual model we view
records at two levels. At a concrete level they have common
representations on computers like PDF or MPEG files; at an
abstract level they can be represented as a matrix of values V
together with a distinguished element ?. We write V mn

? for
the m by n matrix space whose entries are values v 2 V or ?.
In this case, an abstract document might be a two dimensional
array V mn

? where V is a space of characters, m is the number
of lines and n is the width of the text column. An image
is a similar array but V is a space of RGB triples. A video
might be a three dimensional array consisting of a collection
of images. Let us refer to spaces like V mn

? as matrix spaces
and denote them with the character M (so that records r are
from M). We assume a concretion function C that maps an
abstract representation (matrix) to a corresponding concrete
representation (ASCII document, WAV recording, etc.). To

keep things simple let’s assume that this can be done so that
there is an inverse abstraction function A so that A � C and
C �A are identity functions.

Now, we suppose that sensitive parts of a collection of
records can be found with a function. A recognizer is a
function � : M ! P where P is the set of sets of indices
p in the matrix space M . For example, if M is V mn

? , then
an element P 2 P is a set of pairs (i, j) where 1 i m
and 1 j n. For example, a function on ASCII characters
in a document might be � : V mn

? ! P where the output
of � on an input document is the set of digits considered
to be parts of social security numbers (SSNs). The goal is
to use this to redact the SSNs by replacing the recognized
digits with the distinguished value ?. We use a special term
for the corresponding function that replaces recognized matrix
values with ?. This is called a decognizer and has the type
 : M ! M . The simple decognizer induced by a recognizer
 is defined as follows: (r)p is equal to ? if p 2 �(r)
and it is equal to rp otherwise. We’ll discuss later the idea
of (non-simple) decognizers that produce values other than ?;
an example is a video redaction scheme that hides faces with
blurring or pixelation.

The next steps to building a conceptual toolkit for man-
aging redaction is to develop a library of recognizers and
decognizers and with ways to compose and review them. The
composition of decognizers needs to be carefully conducted.
For example, if � is a recognizer for SSNs and �0 is a
recognizer for credit card numbers, one would reasonably
expect nice properties, like an assurance that the order in
which the induced decognizers are used does not make a
difference. To assure the right results we propose a multiary
merge function ⌫ that takes a sequence of recognizers as
arguments and produces a recognizer that is independent of the
order of its arguments. We define ⌫(�,�0)(r) = �(r)[�0(r).
Then we define = µ(�,�0) to be the decognizer induced
by ⌫(�,�0). Similar definitions are used for lists of arguments
µ(�1, . . . ,�n).

Putting all of this together, if we have an ASCII file r and
want to use recognizers � and �0 to redact SSNs and credit
card numbers from it, then the value r0 = C(µ(�,�0)(A(r)))
has the desired property. In practice it will not be efficient
to literally convert concrete into abstract values to apply
an abstract recognizer. However, we know that a proposed
concrete decognizer is correct if = C � µ(�,�0) �A.

III. ILLUSTRATION

To explore the idea of a modular and extensible toolkit based
on our conceptual model, we built a prototype case study,
which explores, within a common implementation framework,
a collection of recognizers and decognizers for a diversity of
media types including audio, text, and video (Figure 1).

Audio. A FOIA request might dictate the disclosure of an
audio stream from a conversation between a police officer and
a civilian. However, it might be desirable to redact names
of minors/victims or phone numbers. To illustrate this we

Fig. 1: High-level architecture for a redaction toolkit with sim-
ple decognizers applied to an abstract record r for document,
video and audio streams.

built two respective audio recognizers. We further built a
decognizer which, given the original input and the output of
the recognizers, replaces the sensitive information with a pre-
defined sound (empty sound or beep sound). The recognizers
use Google’s speech recognition to transcribe the audio into
half second intervals which they process to detect the presence
of a target name or phone number using a pre-built library.
Information regarding the intervals is fed to the decognizer
which replaces the sensitive time intervals of the original
audio stream with the pre-defined sound. In particular, our
framework composes (merges) the recognizers to assure that
the order of their application does not matter.

Text. Another interesting scenario is redaction of sensitive
information from text. In fact the majority of FOIA requests
currently involve documents, where sensitive information such
as email addresses, phone numbers and SSN numbers need to
be redacted. To illustrate this scenario, we built three text rec-
ognizers: one for email addresses; one for phone numbers; and
one for SSN numbers. We further built an induced decognizer
which replaces the characters indicated by the recognizers with
a special symbol (like an X or *). Note that, if we apply the
recognizers serially, this might lead to privacy leakage. Just
for purposes of illustration, consider the following scenario:
a phone number (10 digits long) contains an SSN number (9
digits long). If we apply the SSN recognizer first which will
redact the 9 digits, and then apply the phone recognizer on
the result, the latter will fail, resulting in leaking 1 digit of the
phone number. According to our analysis (see Section II), the
combination of such recognizers needs to provide an assurance
that the order of their application is insignificant. Instead, we
apply each recognizer on the original input. Then, for each
recognizer output, the decognizer is applied to replace the
indicated characters, with a special symbol. Finally, we merge
the results (either for each line or for each document as a
whole) by maximizing the number of special symbols in the
final output text. The toolkit further outputs a report, including
whether characters where recognized as part of an object, by
more than one recognizer. For example, in the case of the SSN
number embedded in a phone number, the report will indicate

which characters of the original text were identified as part of
both an SSN and a phone number.

Video. Video can be modeled as a sequence of frames. Vision
recognizers typically output the pixel coordinates where the
objects are detected within a frame. We built three video
recognizers: one for faces; one for eye detection; and one
for mouth detection. In our implementation we used the
opencv library with haar cascades. The recognizers identify
the corresponding pixels in the original frame detected as
part of a desired sensitive object. We also built an induced
decognizer, which given the original input and the output of the
combination of the recognizers, it replaces the detected pixels
with green pixels (rgb(0,255,0)). The induced decognizer
simply maximizes the redaction across recognizers. Thus, it
wouldn’t matter in which order the recognizers were applied;
all pixels corresponding to a recognized mouth, eye or face
will be replaced. However, in some cases redaction with simple
decognizers can fail (leaking information). For example, if
within a frame, part of the face is obstructed by a physical
object, then the face recognizer would fail. The toolkit will
still redact the mouth and eyes of the person but part of the
face will be revealed in some frames. In our implementation,
we remember the detected and redacted faces from previous
frames. Thus when a mouth or eye is detected within the pixel
coordinates of an old face, it automatically redacts the whole
historical face region to ensure no information leakage. Video
demonstrations can be found on our project’s website [10].

While this is preliminary, since more complicated scenarios
exist in reality, it demonstrates that while the commutative
property of the ⌫ function can ensure non information leakage
in the simple scenarios we described in Section II, it might not
be enough for more complex cases. Therefore, new properties
need to be defined to describe more complex recognizer and
decognizer functions, which in turn will allow the development
of correct redaction application for more interesting scenarios.

IV. DISCUSSION

Complex Recognizers. In Section II we described “simple”
abstract decognizers, which replace a matrix value in the
original input as indicated by a recognizer, with a distinguished
value. This is meaningful and useful in many applications.
For example, on a par with our illustration (see Section III), a
redaction service could replace all characters belonging to an
SSN number with an asterisk (*); in social media, if we were to
perform access control on faces rather than whole images we
could replace pixels recognized as being in the protected face
with black pixels. However, in some cases, the replacement
value is not simple. For example, in the audio case, we
replaced time intervals with a given sound (empty or beep).
Representing audio in the abstract space is more complicated:
audio can be seen as a signal in the time domain or the
frequency domain. In the former case we could use the root
mean squared (RMS) amplitude value per time sample, while,
in the former case, we could use the amplitude and frequency
values. This would allow us to perceive audio signals as two-

dimensional arrays. The recognizers must recognize the time
intervals or frequencies belonging to sensitive sound. The
replacement value used by the decognizer can be a constant
amplitude value to represent the beep sound or empty sound.

However, for some other applications, we want to go
beyond the simple decognizer strategy and the issue is not
just representation. A well-known example is hiding faces
by blurring them. Using a simple box blur approach, pixels
recognized as part of a sensitive face are replaced with the
average value of their neighboring pixels in the original
matrix. Obviously, our simple decognizer cannot describe this
operation. Things become even more challenging with other
redaction operations. For example, one might wish to encrypt
the recognized values [11]. This would allow redacted faces
to be replaced later using a key even without access to the
original image. Moreover, previous work has shown that by
substituting words with synonyms or by replacing characters
within words, renders automatic identification of the original
input more challenging [12]. A number of works also focus on
strategies in de-identifying health information [13]. In general,
the simple decognizer induced by a recognizer can describe
useful scenarios, but this is just the tip of the iceberg. We
need an extended formalization of the redaction algebra to
describe more complicated functions that create decognizers
from recognizers. Ideally such an algebra will support proofs
of useful properties about potential information leakage.

Recognizer Quality. Assurance against information leaking
is directly correlated with recognizers’ detection performance.
An ideal recognizer would be one that never misses a sensitive
object and also all the objects that it detects are sensitive
objects. However, most of the recognition technology (speech
recognition, human/face detectors) are not ideal and use prob-
abilistic models to make estimates. In a toolkit multiple recog-
nizers that perform a similar function could be submitted by
different developers and a user could find support for selecting
the most appropriate one. We propose three different schemes
for recognizer quality evaluation as follows: (a) manual; (b)
assisting; (c) crowdsourced.

In the manual scheme, the user runs all candidate recogniz-
ers and decognizers on the input records and then manually
evaluates their accuracy and selects how to apply them. This
is feasible in applications or requests where the input size
is tractable and the cost of an error is high. On the other
hand, it can guarantee the least information leakage since the
user explicitly selects the best redactions. Moreover, through
this process, the user has the opportunity to manually redact
information missed by all candidate recognizers. Thus it makes
the scheme appropriate for sensitive applications like the
declassification of documents for review by congressional
committees. Many FOIA requests might have this standard
as well. Note however, that here the amount of work the user
needs to do may be significantly reduced since the framework
will automatically find and redact many sensitive instances.

In the assisting scheme, the toolkit automates more of the
previous process to further alleviate the user from labori-

ous manual evaluations. For example, the tool can provide
the administrator with a report and/or cues focusing on the
differences between the candidate recognizers. This reduces
the administrator effort but it might end up revealing more
information than intended. For example, all candidate video
recognizers might end up missing the same faces in the same
frames. The user might never be given the opportunity to catch
and rectify this event.

Alternatively, the framework could utilize crowdsourcing for
recognizer evaluation. For example, crowdsourcing platforms
such as Amazon Mechanical Turk, Microworkers or similar
platforms, can be utilized to enroll users. These will be
queried to manually evaluate the accuracy of recognizers on
predefined inputs. Of course, some care is needed to assure
that sensitive information is not leaked to the crowdsource
platform participants. This might be done by taking data out
of context such as identifying fragments of names or pictures;
or it could be done by labeling non-sensitive data and using
this to train classifiers that are used on the sensitive data.

Toolkit Utility. Currently, an institution interested in redaction
would need to either develop recognizer and redaction algo-
rithms from scratch, or perform a wide scale search for suitable
technologies. A toolkit could reduce this effort through a
global, open-source repository offering a collection of libraries
for recognizer and decognizer algorithms.

A redaction toolkit should support policies: that is, given
a policy described in a suitable formalism, the correct com-
bination of recognizers and decognizers should be chosen to
be applied on the input records. Consider for example the fol-
lowing simple FOIA policy: replace all SSN numbers from all
input documents with character *. In this case, the toolkit will
present the user with all candidate text recognizers that detect
SSN numbers and their induced decognizers which replace
the characters belonging to SSN numbers with a star symbol.
A Facebook policy applied when a person is not authorized
to see a particular face in an image could be: replace face
having id=’123’ with rectangle having color=’green’. This
would replace all the pixels belonging to the particular face
with green pixels.

Community Value. Last but not least, such a toolkit could
offer significant value to the community. We envision this to
be analogous to the Weka [14] toolkit for data mining. The
envisioned toolkit can be the equivalent for redaction where
recognizers and decognizers can be integrated and extended
by the community. The toolkit can offer support in combining
such recognizers by enforcing correctness checks on their
input and output arguments. Furthermore, it would be of
value to researchers active in information redaction, dataset
anonymity, and also to government and private institutions
which are either legally bound to perform redactions (FOIA)
or offer a relevant service (Google Street View, Facebook etc.).

V. RELATED WORK

There is a body of literature on solutions for controlled
disclosure of specific media types such as images [7], [15],

[11], [1], text [3], [16] and video streams [6], [5], [4],
[17]. Other works focus on designing frameworks were third-
party applications gain controlled access to all or parts of
various media objects [8], [9]. All prior techniques can be
complementary to our approach. Our system does not focus
on developing the recognition technology but instead it uses it
as a means to continuously update its sensitive information
discovery capabilities. Moreover, we abstract away from a
specific application domain and make the first step towards
developing the theory associated with the description of recog-
nizers and the development of respective decognizers and their
compositions for redacting information from media streams.

VI. CONCLUSION

To keep pace with the evolution of recognition technology
we argued the value of a close follower modular extensible
redaction toolkit. We made the first step towards the develop-
ment of a theory which can be leveraged to express correctness
properties in the utilization and composition of recognizers
and decognizers. To showcase the application of the proposed
theory in practice we developed a prototype performing redac-
tion on a variety of media streams for different application
scenarios and identified key points for further development.

REFERENCES

[1] P. Ilia, I. Polakis, E. Athanasopoulos, F. Maggi, and S. Ioannidis,
“Face/off: Preventing privacy leakage from photos in social networks,”
in CCS. ACM, 2015.

[2] S. Sadigh-Eteghad, M. Talebi, and M. Farhoudi, “Association of
apolipoprotein e epsilon 4 allele with sporadic late onset alzheimers
disease,” A meta-analysis. Neurosciences (Riyadh), 2012.

[3] D. Lopresti and A. L. Spitz, “Quantifying information leakage in
document redaction,” in HDP Workshop. ACM, 2004.

[4] E. T. Hassan, R. Hasan, P. Shaffer, D. Crandall, and A. Kapadia,
“Cartooning for enhanced privacy in lifelogging and streaming videos,”
CVPRW, 2017.

[5] N. Raval, A. Srivastava, A. Razeen, K. Lebeck, A. Machanavajjhala,
and L. P. Cox, “What you mark is what apps see,” in MobiSys. ACM,
2016.

[6] R. Templeman, M. Korayem, D. J. Crandall, and A. Kapadia, “Placeav-
oider: Steering first-person cameras away from sensitive spaces.” in
NDSS. ISOC, 2014.

[7] S. Jana, A. Narayanan, and V. Shmatikov, “A scanner darkly: Protecting
user privacy from perceptual applications,” in S&P. IEEE, 2013.

[8] S. Jana, D. Molnar, A. Moshchuk, A. M. Dunn, B. Livshits, H. J. Wang,
and E. Ofek, “Enabling fine-grained permissions for augmented reality
applications with recognizers.” in USENIX Security, 2013.

[9] F. Roesner, D. Molnar, A. Moshchuk, T. Kohno, and H. J. Wang, “World-
driven access control for continuous sensing,” in CCS. ACM, 2014.

[10] “Project website,” https://goo.gl/7HFzPX, 2017.
[11] P. Aditya, R. Sen, P. Druschel, S. J. Oh, R. Benenson, M. Fritz,

B. Schiele, B. Bhattacharjee, and T. W. I-pic, “A platform for privacy-
compliant image capture,” in MobiSys. ACM, 2016.

[12] B. Li and Y. Vorobeychik, “Feature cross-substitution in adversarial
classification,” in NIPS, 2014.

[13] B. A. Malin, K. E. Emam, and C. M. O’keefe, “Biomedical data privacy:
problems, perspectives, and recent advances,” 2013.

[14] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann, 2016.

[15] A. Frome, G. Cheung, A. Abdulkader, M. Zennaro, B. Wu, A. Bissacco,
H. Adam, H. Neven, and L. Vincent, “Large-scale privacy protection in
Google street view,” in ICCV. IEEE, 2009.

[16] C. M. Cumby and R. Ghani, “A machine learning based system for
semi-automatically redacting documents.” in IAAI, 2011.

[17] M. Korayem, R. Templeman, D. Chen, D. Crandall, and A. Kapadia,
“Enhancing lifelogging privacy by detecting screens,” in CHI. ACM,
2016.

Andrew Weyl - 2018

A Multinational Legal Examination of Individual Security Risks Related to the
Internet of Things

Andrew Weyl
University of Wollongong, School of Law

Wollogong, Australia
aweyl@uow.edu.au

Department of Legal Studies
Hodges University

Naples, U.S.A.
aweyl@hodges.edu

Businesses, hospitals, governments and other organizations
endlessly collect and store enormous amounts of personal
data every day. Individuals rarely consider how their
personal data is collected, stored or secured. In fact, few of
us realize how our daily activities create a significant
amount of personal data. The frequency by which we create
personal data is increasing exponentially as we rely more
heavily on Internet of Things (IoT) devices connected to the
internet to provide numerous benefits. This discussion will
examine the legal consequences of collecting personal data
gathered from IoT devices from a multinational perspective.

I. PERSONAL DATA
Businesses, hospitals, governments and other organizations
endlessly collect and store enormous amounts of personal data
every day. Individuals rarely think about how their personal
data is collected, stored or secured. In fact, few of us realize
how our daily activities create a significant amount of
personal data. The amount of data we create is increasing
exponentially resulting from the Internet of Things (IoT)
where devices connected to the internet provide tack our
actions and activities. This discussion will examine the legal
consequences of collecting personal data gathered from IoT
devices from a multinational perspective.

II. INTERNET OF THINGS
It is not uncommon for someone to set their alarm, program
the coffee maker, warm/cool the house, go for a morning run,
drive to work, sit at the computer, access a few phone apps
throughout the day, head to the gym, grab a dinner out, return
home to watch television and head to bed completely unaware
that every action has been tracked and stored. Welcome to the
Internet of Things, a world where billions of internet
connected devices provide convenience in our everyday lives.
Every connected device is collecting data about us, our
location, habits and purchases. The conveniences provided
create a temptation to ignore the security risks.

Internet of things typically means the interconnection via the
internet of computing devices embedded in everyday objects,

enabling them to send and receive data.1 It is the concept of
connecting any device with the capacity to download
information to the internet and possibly to other devices.
Included are such things as cellphones, coffee makers,
appliances, headphones, lighting systems, wearable devices,
home locks, thermostats and any other internet connected
device. 2 This also applies to workstations, copy machines,
employee badges, business and mechanical components such
as the jet engine of an airplane (Malaysian Airline flight
ML370 sent out a signal shortly before disappearing,
providing an arc of possible crash locations).

A. Consequences
What happens to all the data collected regarding our habits,
purchases, and location? Recently Strava, a company which
collects data from fitness apps and watches, released a
worldwide map showing running courses collected from every
user of its services. The release of this information was
intended to provide opportunities for runners to explore routes
they might not have known existed. Rather than planning and
mapping out a new course, the release of all data accumulated
from runners throughout the world would provide runners the
opportunity to use a course someone else had already
established. Strava’s action to release this data resulted in the
unforeseen consequence of revealing the location of secret
U.S. military bases in the Middle East.3 Military personnel
were using their GPS smart watches and apps to monitor how
far and fast they had run. This running information was
uploaded to the internet and collected by Strava. When
Strava released the data publically, though well intended, it
revealed every customer’s past run, not realizing the legal
consequences.

Some auto insurance companies also collect customer driving
data by installing telematics devices into the insured car to

1 Jacob Morgan, A simple explanation of the ‘Internet of Things’. Forbes,
May 13, 2014
2 Internet of Things, FTC Staff Report. January 2015
3 Aja Romano, How a fitness app revealed military secrets and the new reality
of data collection. Vox, Feb. 1, 2018

Andrew Weyl - 2018

provide data regarding driving habits. 4 Good drivers are
rewarded with lower premiums with bad drivers paying higher
premiums. Several car rental companies have also installed
telematics to insure rented cars stay within pre-designated
regions and to insure drivers obey posted laws.5 Automotive
manufactures have been collecting data on automobile use for
a number of years.6 Benefits to auto manufactures include the
ability to monitor engine function, unlock vehicles, call
emergency services, and provide the location of stolen cars.
Disadvantages include voiding warranties in the event of
excessive use, monitoring individual driving habits, and
always knowing where vehicles (and presumptively the
owners) are located.7 Would the outcome of OJ Simpson’s
criminal trial have been different if Ford had GPS location
tracking for the infamous white Bronco?

In an effort to insure employees are working at their
productive peak, businesses have experimented with devices
that track location (chips in ID badges), productivity
(computer use), hygiene (hand sanitizers that connect to
employee badges), and even voice tone (call center
headphones with Bluetooth voice data monitors).8

It is believed that by 2020 there will be over 26 billion
connected devices. 9 With billions of devices interconnected
with each other and to the internet what can people do to make
sure that their information stays secure? Will someone be able
to hack into your toaster and thereby get access to your entire
network? The IoT opens companies all over the world to more
security threats. The more information collected, the greater
the potential for data breaches, hacks, and unintentional
releases. Also of importance is the issue of privacy and data
sharing. Governments have an obligation to protect its
citizens from potential harm through effective education
regarding potential risks, and through effective legislation
regarding security measures.

B. Permission
The first step in providing security for IoT devices is for
companies to seek permission to collect, store, use the data
generated. Consumers need to be aware when they grant
permission for the collection of data they oftentimes lose the
right to that data, regardless of how private. When devices
ask for permission to access our data many of us obediently
provide the requested access without question. Does a fitness

4 Cherise Threewit, How do those car insurance tracking devices work?
U.S.News & World Report, Oct. 24, 2016
5 https://www.positionlogic.com/industries-gps-tracking-solutions/gps-
tracking-solution-rental-car-services
6 Rob Stumpf, Car Manufacturers have an alarming ability to farm and sell
driver data. The Drive Nov. 23, 2017
7 Time Cushing, Cars are delivering tons of driving data to manufacturers
with minimal security and even less transparency. Tech Dirt, Feb. 17, 2015
8 Scott Preppat, Regulating the Internet of Things: First steps towards
managing discrimination, privacy, security and consent. 93 Tex. Law Rev. 85
(2014)
9 https://www.gartner.com/newsroom/id/2636073

tracker need access to your contacts? Does an app that will
remotely start your car need access to your call data? Does a
smart home lock need access to your phone storage? It is
important for consumers to realize they are often times blindly
giving access to large amounts of data to companies who have
little or no safeguards in place regarding your personal
information.

While large tech companies such as Apple and Google
provide reasonable protections for data and provide consumers
the opportunity to increase their security settings, some
companies make no promises to provide any security for your
information collected through IoT. Further, personal data has
economic value which can, and is, sold to other organizations
for profit.10 Once third party businesses have purchased your
data they are not bound to disclosure agreements and are
extremely difficult to monitor for security purposes.

When access to data is freely given and that data falls into the
hands of a third party there is no longer any privity of contract
to protect the original user. Privity of contract is a legal term
whereby a party who is not a party to the agreement is not
bound to the terms of the agreement.11 If, for example, Jane
Doe feels comfortable giving XYZ Company access to the
data on her phone or device XYZ has a legal obligation to
honor the terms of any agreement between Doe and XYZ.
However, the terms of the agreement often give ownership to
XYZ any data collected from Doe’s activities. XYZ has a
legal obligation to protect this data. XYZ may have a legal
right to sell this data to ABC for profit. The obligations
imposed upon ABC to protect this data are far less certain.
Further, Doe, who willingly provided permission for XYZ to
access her data, has no breach of contract claim against ABC
if the data is disclosed. The legal implications of collecting,
safeguarding, selling, and storing data depend on the
applicable jurisdiction. Individual countries provide different
protections for the safety of personal data therefore it is
important to understand how these rights protect parties.

III. MULTINATIONAL LEGAL AND LEGISLATIVE APPROACHES
When determining how private data collected from devices
used in the IoT it is essential to look at legislation passed in
the applicable jurisdiction. Various nations deal with data
privacy, collection and storage differently. Both the European
Union and Australia have recently passed legislation that will
take effect in 2018 to address data privacy issues. While the
United States has noted the importance of data privacy in the
age of IoT, no federal legislation has been adopted.

A. European Data Protection Laws
The European Union has a unified data protection law called
the Data Protection Directive. The EU's Data Protection

10 https://www.economist.com/news/briefing/21721634-how-it-shaping-up-
data-giving-rise-new-economy
11 Oxford Law Dictionary, 3rd Edition, 2017

Andrew Weyl - 2018

Directive regulates the processing of personal data within the
European Union and is an important component of the EU's
privacy and human rights law. However, recognizing the need
to modify this law to address globalization and technological
developments, the European Union prepared an updated
European General Data Protection Regulation which becomes
effective mid-2018.12 The Data Protection Directive asserts
that personal information should not be processed at all, but if
it is, it must fall within certain categories of transparency,
legitimate purpose, and proportionality (fairness, justice,
constitutionality). 13 The new law will also expand the data
protection regime currently in place to cover all international
companies doing business in the EU.14

A recent EU decision directly explored whether the definition
of “personal information” in European law included dynamic
IP addresses that could only be identified when linked with
data held by a third party (in this case an ISP).15 The dispute
in that case concerned storage by the German government of
the IP addresses of devices that visited government websites.
The court found that even though a dynamic IP address is not
itself personal information, it can become personal
information when linked with other data. 16 Under the new
European Data Protection directive, privacy standards have
now clarified that no untargeted, indiscriminate collection of
data is permissible, even if it is for the purposes of protecting
national security or investigating serious crime.17

The advantage of the new regulation is that it provides recent,
comprehensive regulation of data privacy into a single source.
Businesses are not required to determine the rules from 28 EU
member states regarding legislation pertaining to safeguards
of personal data. But the European Data Protection regulation
has its shortcomings. It is said the European Commission did
not have the vision to propose a truly modern privacy law.18
It is, in essence, the old privacy law one level more detailed
and complicated. In addition, the search for compromises
between the 28 member states and the European Parliament
has left the new law in ruins.19 After almost four years of
negotiations, the stakeholders preferred to finish the process
instead of taking the time to properly finalize it.20 When other
countries notice the frustration the new law will most likely
cause in the EU, they may disqualify it as a potential global
standard.

12 Official Journal of the European Communities, Directive 95/46/EL
Amended; 2016
13 Nigel Hawthorn, 10 Things you need to know about the EU Data Protection
Regulation. Computer World UK, May 6, 2015
14 https://www.hg.org/data-protection.html
15 Patrick Bryer v Bundesrepublik Deutschland, Court of Justice of the EU,
Oct. 19, 2016
16 Id.
17 Id.
18 Ulrich Wuermeling, The elusive quest for global privacy standards. US
News, Mar. 22, 2016
19 Same as above.
20 Same as above.

The EU Data Protection Regulation three prong test would
likely find Strava did not breach individual data security.
Strava likely would succeed regarding the legitimate purpose
of the data release and the proportionality. Releasing
locations of individual running courses was for the legitimate
purpose of enabling other runners to access the same courses.
Further, no issues of fairness and justice arise from revealing
where its users choose to run. Transparency of the data
released would ultimately be Strava’s most challenging
hurdle, but the company could legitimately argue no personal
data had been released. Simply revealing where someone ran
does not breach transparency requirements.

B. Australia
On 13 February 2017, the Australian Senate passed the
Privacy Amendment (Notifiable Data Breaches) to be enacted
into law from 22 February 2018. The Act requires an
obligation of notification for data breaches.21 Despite having
updated its privacy laws in March 2014, Australia had been
lagging behind other countries in relation to data breach
notification obligations.22

The new law will complement Australia's existing privacy
laws which are set out in the Privacy Act 1988 (Cth) (Privacy
Act). The Privacy Act lists various principles, 13 of which
apply to organizations and provides compulsory guidelines on
how those organisations collect, store, manage and disclose
personal information in Australia.23 Personal information is
defined as: “information or an opinion, whether true or not,
and whether recorded in a material form or not, about an
identified individual, or an individual who is reasonably
identifiable.”24 Common examples are an individual’s name,
signature, address, telephone number, date of birth, medical
records, bank account details and commentary or opinion
about a person. The law is also intended to cover data breach
events.

In possibly Australia’s most important privacy case to date,
the Federal Court recently dealt a severe blow to Australia’s
information privacy laws by narrowing the definition of
“personal information” holding that Australia’s data privacy
laws only protect “personal information”, which is defined by
whether a person is identified or identifiable from the data.25
Why is this significant? Let’s return to the Strava example;
data regarding running paths collected and then released to the
internet did not list individual users and avoided personal
information linked to individual accounts. Therefore, in
Australia this information is not protected personal

21 Dudley Kneller, Australia: New Mandatory Privacy and Breach Notification
Laws. Mondaq, May 22, 2017
22 Sergio Ferreira, 100 Days before privacy law takes effect. Computer World,
Nov. 15, 2017
23 Melinda L McLelland and Emily R Fedeles, Australia’s new breach
notification law to take effect February 2018. Mondaq, Mar. 16, 2017
24 Sergio Ferreira, 100 Days before privacy law takes effect. Computer World,
Nov. 15, 2017
25 Jake Goldenfein, Australia’s privacy laws gutted in court ruling on what’s
‘Personal Information’. The Conversation, Jan. 19, 2017

http://www.itnews.com.au/news/landmark-australian-ruling-on-what-counts-as-personal-information-448049

Andrew Weyl - 2018

information. However, it is not exceptionally difficult to link
general data to private users. Strava releasing running paths
did not reveal individual information or military base
locations, and yet the connections were made.

Individual privacy protections need to be enhanced in light of
recent litigation in Australia and it will be up to the courts to
interpret the level of protections granted in the new Privacy
Amendment soon to take effect.

C. United States of America
A number of states in the United States have had data breach
notification laws in place for some time. California, upon
which many States have based their own laws, has had
legislation in place since 2003. Currently 48 U.S. states, the
District of Columbia, Guam, Puerto Rico and the Virgin
Islands have enacted legislation requiring private or
governmental agencies to notify individuals of security
breaches of information involving personal information. 26
However, the United States does not have any centralized,
formal legislation at the federal level regarding this issue,
instead there are numerous pieces of legislation which address
a particular privacy issues in a specific context such as the
United States Privacy Act, the Safe Harbor Act and the Health
Insurance Portability and Accountability Act. Although partial
regulations exist, there is no all-encompassing law regulating
the acquisition, storage, or use of personal data in the U.S.27 In
general terms whoever can be troubled to key in the data, is
deemed to own the right to store and use it, even if the data
was collected without permission, except to any extent
regulated by law.

1) Federal case law
When data is collected the security of that data is of high
importance to consumers especially once a breach has
occurred. Additionally, what happens when data is collected
without permission? Customers of Pfizer sued when their
private data was exposed. In the legal proceedings Pfizer
argued that the “various flavors of damages” alleged in the
complaint were inherently speculative and not recoverable
under Louisiana law, which required that damages be
established to a “legal certainty” in order to prevail at
trial.28 The court relied on previous cases which held actual
damages cannot be established by remote and conjectural
estimates of loss. 29 Seeing the inherent problem with
requiring actual and not speculative damages the court stated,
“Given the rate at which internet technologies evolve, the
ability of computer hackers to stay two steps ahead of the
latest security measures, and the comparatively slow speed at
which the law responds to cyber threats courts are often ill
equipped to address issues.”30

26 https://www.dlapiperdataprotection.com/?t=law&c=US
27 https://www.hg.org/data-protection.html
28 Ponder v. Pfizer, Inc., 522 F. Supp. 2d 793, 796–97 (M.D. La. 2007)
29 Id.
30 Id. At 797–98

Another high profile case, In re Facebook Internet Tracking
Litig., found that the Plaintiffs did not establish a “realistic
economic harm or loss that is attributable to Facebook's
alleged conduct.”31 Facebook was accused of tracking users’
internet activity even after they logged out of the social media
website. The Plaintiffs brought action in federal court
claiming Facebook breached the terms of their contract with
customers and breached their duty of good faith and fair
dealing. The federal court held a plaintiff must show that the
defendant (1) intentionally accesses without authorization a
facility through which an electronic communication service is
provided; or (2) intentionally exceeds an authorization to
access that facility.32

While it is argued Strava may have revealed the location of
secret military bases, it did not expose individual private data
and would likely prevail in a lawsuit filed in US courts. Not
only have US courts been reluctant to find in favor of
plaintiffs, they tend to find satisfaction general authorizations
of collection and use of the data suffice to meet existing legal
requirements.

IV. CONCLUSION
In every case where a court has determined that the essence of
a claim was actually not unauthorized access, but rather
unauthorized disclosure or use of the obtained information, the
violator has been found to be not liable.33

The IoT provides consumers with unprecedented opportunities
but with opportunity comes consequence. The meteoric rise
of IoT devices creates new issues regarding privacy. Personal
data is collected in ways many of us do not even imagine.
Much of the data generated is necessary for the use of IoT
devices and provides the benefits inherent in their nature.
However, consumers must be aware they are being monitored
and choose the level of privacy they wish to enjoy.
Governments need to pass effective stringent legislation
regarding individual privacy and the methods used to collect,
store, and disseminate private information. It is not enough to
require companies to have a plan regarding data storage;
organizations must actively engage in safeguarding private
data. Ultimately it is up to the consumer to insure individual
personal data remains safe by restricting authorization of its
use.

31 In re Facebook Internet Tracking Litig., 263 F. Supp. 3d 836, 841–42 (N.D.
Cal. 2017)
32 Id.
33 In re Google Inc., No. 13-MD-02430-LHK, 2013 WL 5423918, at *2 (N.D.
Cal. Sept. 26, 2013)

An Overview of Vulnerabilities of Voice Controlled Systems

Yuan Gong
Computer Science and Engineering

University of Notre Dame
Notre Dame, IN 46556
Email: ygong1@nd.edu

Christian Poellabauer
Computer Science and Engineering

University of Notre Dame
Notre Dame, IN 46556

Email: cpoellab@nd.edu

Abstract—Over the last few years, a rapidly increasing number
of Internet-of-Things (IoT) systems that adopt voice as the
primary user input have emerged. These systems have been
shown to be vulnerable to various types of voice spoofing
attacks. However, how exactly these techniques differ or relate
to each other has not been extensively studied. In this paper,
we provide a survey of recent attack and defense techniques for
voice controlled systems and propose a classification of these
techniques. We also discuss the need for a universal defense
strategy that protects a system from various types of attacks.

I. INTRODUCTION

An increasing number of IoT systems rely on voice input
as the primary user-machine interface. For example, voice-
controlled devices such as Amazon Echo, Google Home,
Apple HomePod, and Xiaomi AI allow users to control their
smart home appliances, adjust thermostats, activate home
security systems, purchase items online, initiate phone calls,
and complete many other tasks with ease. In addition, most
smartphones are also equipped with smart voice assistants such
as Siri, Google Now, and Cortana, which provide a convenient
and natural user interface to control smartphone functionality
or IoT devices. Voice-driven user interfaces allow hands-free
and eyes-free operation where users can interact with a system
while focusing their attention elsewhere. A block diagram of
a typical voice controlled system (VCS) is shown in Figure 1.

Despite their convenience, VCSs also raise new security
concerns. One such concern is their vulnerability to a voice
replay attack [1], i.e., an attacker can replay a previously
recorded voice to make the IoT system perform a specific
malicious action. Such malicious actions include the opening
and unlocking of doors, making unauthorized purchases, con-
trolling sensitive home appliances (e.g., security cameras and
thermostats), and transmitting sensitive information. While a
simple voice replay attack is relatively easy to detect by a user,
and therefore presents only a limited threat, recent studies have
pointed out more concerning and effective types of attacks,
including self-triggered attacks [2], [3], inaudible attacks [4],
[5], and human-imperceptible attacks [6], [7], [8]. These
attacks are very different from each other in terms of their
implementation, which requires different domain knowledge
in areas such as the operating system, signal processing,
and machine learning. However, how exactly they differ or
relate to each other has not been extensively studied. As a
consequence, to the best of our knowledge, current defense

Command
Machine Learning

Human Voice Digital Speech Signal
Execu!on

Fig. 1. An illustration of a typical voice controlled system. The device
captures the human voice, converts it into a digital speech signal, and feeds
it into a machine learning model. The corresponding command is then
executed by the connected IoT devices. Potential points of attack in this
scenario include: 1 : spoofing the system using previously recorded audio,
2 : hacking into the operating system to force the voice-driven software to

accept commands erroneously, 3 : emitting carefully designed illegitimate
analog signals that will be converted into legitimate digital speech signals by
the hardware, and 4 : using carefully crafted speech adversarial examples to
fool the machine learning model.

techniques only aim to defend attacks of one specific category,
with the assumption that the defender knows the details of the
attacking technology. From a security standpoint, this is deeply
unsatisfactory. Therefore, in this paper, we provide a survey of
recent attack and defense techniques for voice controlled sys-
tems, discuss their relationships, and propose a classification
of these techniques. We further discuss a potential universal
defense strategy for different types of attacks. We expect that
the analysis and discussion in this paper will provide useful
insights for future studies and efforts in building secure voice-
driven IoT systems.

II. VOICE-BASED ATTACKS

With the rapidly growing popularity and functionality of
voice-driven IoT devices, the potential of voice-based attacks
becomes a non-negligible security risk. As discussed in [9],
[2], [10], an attack may lead to severe losses, e.g., a burglar
could enter a house by tricking a voice-based smart lock or
an attacker could make unauthorized purchases and credit card
charges using a voice-based system. Such attacks can be very
simple and often difficult or even impossible to detect by
humans and voice attacks can be hidden by other sounds or
embedded into audio and video recordings. Further, it is also
very easy to scale up such attacks, e.g., a hidden malicious
audio sample in a YouTube video could simultaneously target
millions of devices.

Although the implementations of existing attack techniques
may be very different, their goals are the same: generating a
signal that leads a voice controlled system to execute a specific
malicious command that the user cannot detect or recognize.

In the following sections, we first introduce representative
state-of-the-art attack approaches according to the type of
implementation. We then further discuss the positives and
negatives of each approach and how they relate to each other.
The attacker performance discussed in this section is evaluated
and reported by the original publication. Due to rapid changes
of cloud-based systems, the attacker performance is also likely
to change over time.

A. Attack Classification Based On Implementation

1) Basic Voice Replay Attack: It is widely known that
voice controlled systems are vulnerable to voice replay attacks,
i.e., an attacker can replay a previously recorded voice to
make a system perform a specific action [1], [13], e.g.,
as demonstrated previously with the popular Amazon Alexa
technology [10]. A shortcoming of the basic voice replay
attack is that it is easy to detect and therefore has a limited
practical impact. Nevertheless, as shown later in this section,
voice replay attacks are the basis of other more advanced and
dangerous attacks.

2) Operating System Level Attack: Compared to basic voice
replay attacks, an operating system (OS) level attack exploits
vulnerabilities of the OS to make the attack self-triggered and
more imperceptible. Representative examples of this are the
A11y attack [3], GVS-Attack [2], and the approach presented
in [9]. In [3], the authors propose a malware that collects
a user’s voice and then performs a self-replay attack as a
background service. In [2], the authors further verify that the
built-in microphone and speaker can be used simultaneously
and that the use of the speaker does not require user permission
on Android devices. They take advantage of this and propose
a zero-permission malware, which continuously analyzes the
environment and conducts the attack once it finds that no
user is nearby. The attack uses the device’s built-in speaker to
replay a recorded or synthetic speech, which is then accepted
as a legitimate command. This self-triggered attack is thus
more dangerous and practical. While this attack can still
be detected by the user, the authors point out that if the
malware has high permissions, it is even possible for it to
import an audio file to the microphone without playing it,
which can make the attack completely inaudible. In [9], the
authors analyze the permission vulnerability to the voice attack
in detail and propose an approach to bypass the permission
management of the Android system. The authors also find that
some malicious actions require a multiple-step command and
further propose an interactive attack that can execute more
advanced commands.

3) Hardware Level Attack: A hardware level attack replays
a synthetic non-speech analog signal instead of human voice.
The analog signal is carefully designed according to the char-
acteristics of the hardware (e.g., the analog-digital converter).
The signal is inaudible, but can be converted into a legiti-
mate digital speech signal by the hardware. Representative
approaches are the Dolphin attack [4] and the IEMI attack [5].
In [4], the authors utilize the non-linearity of a Micro Electro
Mechanical Systems (MEMS) microphone over ultrasounds

and successfully generate inaudible ultrasound signals that
can be accepted as legitimate target commands. Generating
such ultrasound signals requires a special device that includes
a controller (e.g., another smartphone), an amplifier, and an
ultrasonic transducer. The longest attack distance is 175cm.
In [5], the authors take advantage of the fact that a wired
microphone-capable headphone can be used as a microphone
and an FM antenna simultaneously and demonstrate that it
is possible to trigger voice commands remotely by emitting
a carefully designed inaudible AM-modulated signal. This
attack is only effective when the wired headphone is plugged
into the device. A limitation of hardware level attacks is that
generating the attack signal requires special devices, and also
some preconditions must be met (e.g., the victim device needs
to be in the attack range and the microphone needs to be
plugged in). While the synthetic signal is inaudible to the user,
the signal generator might still be noticed by the user.

‘Duck’ ‘Horse’ 0.07

+

‘How are you?’ 0.01 ‘Open the door’

+

Fig. 2. An illustration of machine learning adversarial examples. Studies
have shown that by adding an imperceptibly small, but carefully designed
perturbation, an attack can successfully lead the machine learning model to
making a wrong prediction. Such attacks have been used in computer vision
(upper graphs) [14] and speech recognition (lower graphs) [12], [7], [8].

4) Machine Learning Level Attack: State-of-the-art voice
controlled systems are usually equipped with an automatic
speech recognition (ASR) algorithm to convert digital speech
signal to text. Deep neural network (DNN) based algorithms
such as DeepSpeech [15] can achieve excellent performance
with around 95% word recognition rate and hence dominate
the field. However, recent studies show that machine learning
models, especially DNN based models, are vulnerable to
attacks by adversarial examples [14]. That is, machine learning
models might mis-classify perturbed examples that are only
slightly different from correctly classified examples (illustrated
in Figure 2). In speech, adversarial samples can sound like
normal speech, but will actually be recognized as a completely
different malicious command by the machine, e.g., an audio
file might sound like “hello”, but will be recognized as “open
the door” by the ASR system. In recent years, several examples
of such attacks have been studied [6], [7], [8], [11], [12].

Cocaine Noodles [11] and Hidden Voice Command [6]
are the first efforts to utilize the differences in the way
humans and computers recognize speech and to successfully
generate adversarial sound examples that are intelligible as a
specific command to ASR systems (Google Now and CMU
Sphinx), but are not easily understandable by humans. The
authors observe that ASR systems rely on acoustic features

TABLE I
REPRESENTATIVE VOICE ATTACK TECHNIQUES

Attack Name Attack Type Adversary’s Knowledge Implementation

GVS Attack [2] Operating System White box Continuously analyze the environment and conduct voice replay attack
using built-in microphone when opportunities arise.

A11y Attack [3] Operating System White box Collect the voice of a user and conduct self-replay attack as a
background service.

Monkey Attack [9] Operating System White box Bypass authority management of the OS and conduct interactive voice
replay attack to execute more advanced commands.

Dolphin Attack [4] Hardware White box Emit ultrasound signal that can be converted into a legitimate speech
digital signal by the MEMS microphone.

IEMI Attack [5] Hardware White box Emit AM-modulated signal that can be converted into a legitimate
speech digital signal by the wired microphone-capable headphone.

Cocaine Noodles [11] Machine Learning Black box Similar to the hidden voice command.
Hidden Voice Command [6] Machine Learning Black & White box Mangle malicious voice commands so that it retains enough acoustic

features for the ASR system, but becomes unintelligible to humans.
Houdini [12] Machine Learning Black & White box Produce sound that is almost no different to normal speech, but fails

to be recognized by both known or unknown ASR systems.
Speech Adversarial Example [7] Machine Learning White box Produce sound that is over 98% similar to any given speech, but makes

the DNN model fail to recognize the gender, identity, and emotion.
Targeted Speech Adversarial Ex-
ample [8]

Machine Learning White box Produce sound that is over 99.9% similar to any given speech, but
transcribes as any desired malicious command by the ASR.

(e.g., Mel-frequency cepstral coefficients or MFCC) extracted
from the audio. Therefore, their attack mangles a malicious
voice command signal in such a way that it retains enough
acoustic features for the ASR system to accept it while making
it difficult for humans to understand. The limitation of the
approach in [11], [6] is that the generated audio does not
sound like legitimate speech. As a matter of fact, strictly
speaking, Cocaine Noodles and Hidden Voice Commands are
not really machine learning adversarial examples, because they
use sounds that are not similar to legitimate speech [16]. A
user might notice that the malicious sound is an abnormal
condition and may take counteractions. Further, generating
such adversary examples requires a subjective human test step
to ensure that it is imperceptible by humans, which makes the
approach not fully automated.

In contrast to [11], [6], more recent efforts [12], [7], [8] take
advantage of an intriguing property of DNN by generating
malicious audio that sounds almost completely like normal
speech by adopting a mathematical optimization method. The
goal of these techniques is to design a minor perturbation in the
speech signal that can fool an ASR system. In [8], the authors
propose a method that can produce an audio waveform that
is less than 0.1% different from a given audio waveform, but
will be transcribed as any desired text by DeepSpeech [15].
In [7], the authors demonstrate that a 2% designed distortion
of speech can make state-of-the-art DNN models fail to
recognize the gender and identity of the speaker. In [12], the
authors show that such attacks are transferable to different and
unknown ASR models. Such attacks are dangerous, because
users do not expect that normal speech samples, such as
“hello”, could be translated into a malicious command by
an IoT device. Despite their extraordinary performance, these
methods have a clear limitation: since the perturbation is very
minor, it might not be correctly captured over the air by the
victim device and hence fail to attack. In [8], the authors report

that their method does not have an over-the-air threat, while
in [12], [7], the authors do not report the over-the-air attack
performance.

B. The Adversary’s Knowledge

One important factor of attacks is the adversary’s knowl-
edge. White-box attacks assume that the adversary knows all
details (e.g., design details and characteristics) of the target,
while black-box attacks assume that the adversary does not
have such information. Table I summarizes several attack
schemes discussed in this paper, including their type and the
required adversary’s knowledge. Hardware level attacks are
usually white-box attacks, because the device can be easily
dis-assembled and tested, e.g., in [4], the authors first test the
frequency response of the MEMS microphone and then take
advantage of its nonlinearity to conduct the attack. All OS
level attacks are white-box attacks. Note that all discussed
schemes [2], [9], [3] are targeting Android devices, which
is not surprising since Android is open-source and its inner
workings (e.g., authority management, inter-process commu-
nication) are well known. In contrast, the OS of Amazon Echo
is closed, which prevents it from being attacked. In fact, it is
difficult to perform black-box hardware and OS level attacks.

Different from the OS and hardware level attacks, practical
machine learning level attacks are usually black-box attacks,
because state-of-the-art ASR systems for IoT devices do not
release their detailed algorithms and the training sets. These
ASR systems run in the cloud, where an adversary may not
have access. However, machine learning attacks are able to
attack unknown ASR systems, e.g., in [11], [6], [12], the
authors successfully attack Google Voice without knowing
its details. This is because ASRs use similar (explicit or
implicit) acoustic features and models (e.g., network architec-
tures), which makes the machine learning adversarial examples
universal. This characteristic makes machine learning level
attacks more dangerous.

Another noteworthy point is that attacks can be combined
to become even more dangerous, e.g., GVS-Attacks [2] and
the approach described in [8] can be combined so that the
malware replay machine learning adversarial example sounds
like normal speech instead of a malicious command when it
finds an opportunity. Further, all attacks can be combined with
the one in [9] to become an interactive attack.

III. DEFENSE STRATEGIES

To defend and prevent OS level attacks, voice input and
output need to be decoupled since simultaneously using voice
input and output has been shown to affect users’ security [9],
[2], [3]. For example, AuDroid [13] has been proposed to man-
age the audio channel authority. By using different security
levels for different audio channel usage patterns, AuDroid can
resist a voice attack using the device’s built-in speaker [9],
[2]. However, AuDroid uses a speaker verification system
to defend external replay attacks, including hardware and
machine learning level attacks, which is not effective enough.
Therefore, AuDroid is only robust to OS level attacks.

One defense strategy seems promising for hardware and
machine learning level attacks is adversarial training, i.e.,
training an extra machine learning model that can classify
legitimate samples and adversaries. In [4], the authors use
support vector machine (SVM) to build such a classifier that
can fully defend against their proposed attack. Similarly, in [6],
the authors use logistic regression and achieve 99.8% defense
rate. A limitation of adversarial training is that it needs to
know the details of the attack technology or it needs to collect
a sufficient amount of adversarial examples. In practice, the
attackers will not publish their approaches and they can always
change the parameters (e.g., the modulation frequency in [5]
or the perturbation factor in [7]) to bypass the defense. Thus,
adversarial training is weak in preventing unknown attacks.

Other efforts [2], [6], [13] mention the possibility of using
speaker verification (SV) systems for defense. However, this is
not strong enough, because the SV system itself is vulnerable
to machine learning adversarial examples [7] and previously
recorded user speech [6], [1].

From the perspective of the defender, a strategy that can
resist various (and even unknown) attacks is expected. One
observation is that all existing attacks are based on the replay
attack: OS level and machine learning level attacks replay a
sound and hardware level attacks replay a designed signal. In
other words, the sound source is an electronic device (e.g.,
loudspeaker, signal generator) instead of a live speaker. On
the other hand, only the command from a live speaker should
be legitimate in practical applications. That is, if we can
determine if the received signal is from a live speaker,
we can defend all above mentioned and even unknown
attacks. To the best of our knowledge, such techniques are
non-trivial and have not been widely studied. As an approxi-
mation, in [10], the authors propose a virtual security button
(VSButton) that leverages Wi-Fi technology to detect indoor
human motions and voice commands are only accepted when
human motion is detected. The limitation of this work is

that voice commands are not necessarily accompanied with
detectable motion. In [17], the authors propose VAuth, which
collects the body-surface vibration of the user via a wearable
device and guarantees that the voice command is from the
user. The limitation of VAuth is the need for wearable devices
(i.e., earbuds, eyeglasses, and necklaces), which may be in-
convenient. Finally, in [1], the authors determine if the source
of voice commands is a loudspeaker via a magnetometer and
reject such commands. The limitation of this work is that this
works only up to 10cm, which is less than the usual human-
device distance. Further, this approach does not work for
unconventional loudspeakers and malicious signal generators.
In summary, existing defense techniques are able to address
only some vulnerabilities and therefore more powerful defense
techniques will be required to protect voice-driven IoT devices.

REFERENCES

[1] S. Chen, K. Ren, S. Piao, C. Wang, Q. Wang, J. Weng, L. Su, and
A. Mohaisen, “You can hear but you cannot steal: Defending against
voice impersonation attacks on smartphones,” in Distributed Computing
Systems (ICDCS), 2017 IEEE 37th International Conference on. IEEE,
2017, pp. 183–195.

[2] W. Diao, X. Liu, Z. Zhou, and K. Zhang, “Your voice assistant is mine:
How to abuse speakers to steal information and control your phone,” in
Proc. of the 4th ACM Workshop on Security and Privacy in Smartphones
& Mobile Devices. ACM, 2014, pp. 63–74.

[3] Y. Jang, C. Song, S. P. Chung, T. Wang, and W. Lee, “A11y attacks:
Exploiting accessibility in operating systems,” in Proc. of the 2014 ACM
SIGSAC Conference on Computer and Communications Security. ACM,
2014, pp. 103–115.

[4] G. Zhang, C. Yan, X. Ji et al., “Dolphinattack: Inaudible voice com-
mands,” in Proc. of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2017, pp. 103–117.

[5] C. Kasmi and J. L. Esteves, “Iemi threats for information security: Re-
mote command injection on modern smartphones,” IEEE Transactions
on Electromagnetic Compatibility, vol. 57, no. 6, pp. 1752–1755, 2015.

[6] N. Carlini, P. Mishra, T. Vaidya, Y. Zhang, M. Sherr, C. Shields,
D. Wagner, and W. Zhou, “Hidden voice commands.” in USENIX
Security Symposium, 2016, pp. 513–530.

[7] Y. Gong and C. Poellabauer, “Crafting adversarial examples for speech
paralinguistics applications,” arXiv preprint arXiv:1711.03280, 2017.

[8] N. Carlini and D. Wagner, “Audio adversarial examples: Targeted attacks
on speech-to-text,” arXiv preprint arXiv:1801.01944, 2018.

[9] E. Alepis and C. Patsakis, “Monkey says, monkey does: security and
privacy on voice assistants,” IEEE Access, vol. 5, pp. 17 841–17 851,
2017.

[10] X. Lei, G.-H. Tu, A. X. Liu, C.-Y. Li, and T. Xie, “The insecurity
of home digital voice assistants-amazon alexa as a case study,” arXiv
preprint arXiv:1712.03327, 2017.

[11] T. Vaidya, Y. Zhang, M. Sherr, and C. Shields, “Cocaine noodles:
exploiting the gap between human and machine speech recognition,”
Presented at WOOT, vol. 15, pp. 10–11, 2015.

[12] M. Cisse, Y. Adi, N. Neverova, and J. Keshet, “Houdini: Fooling deep
structured prediction models,” arXiv preprint arXiv:1707.05373, 2017.

[13] G. Petracca, Y. Sun, T. Jaeger, and A. Atamli, “Audroid: Preventing
attacks on audio channels in mobile devices,” in Proc. of the 31st Annual
Computer Security Applications Conference. ACM, 2015, pp. 181–190.

[14] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[15] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, A. Coates, and Y. N. Andrew,
“Deep speech: Scaling up end-to-end speech recognition,” arXiv preprint
arXiv:1412.5567, 2014.

[16] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in Security and Privacy (SP), 2017 IEEE Symposium on.
IEEE, 2017, pp. 39–57.

[17] H. Feng, K. Fawaz, and K. G. Shin, “Continuous authentication for voice
assistants,” arXiv preprint arXiv:1701.04507, 2017.

Biometric-Based Wearable User Authentication
During Sedentary and Non-sedentary Periods

Sudip Vhaduri1, and Christian Poellabauer1

1Department of Computer Science and Engineering
University of Notre Dame, IN 46556
{svhaduri,cpoellab}@nd.edu

Abstract—The Internet of Things (IoT) is increasingly empow-
ering people with an interconnected world of physical objects
ranging from smart buildings to portable smart devices such as
wearables. With the recent advances in mobile sensing, wearables
have become a rich collection of portable sensors and are able
to provide various types of services including health and fitness
tracking, financial transactions, and unlocking smart locks and
vehicles. Existing explicit authentication approaches (i.e., PINs or
pattern locks) suffer from several limitations including limited
display size, shoulder surfing, and recall burden. Oftentimes,
users completely disable security features out of convenience.
Therefore, there is a need for a burden-free (implicit) authen-
tication mechanism for wearable device users based on easily
obtainable biometric data. In this paper, we present an implicit
wearable device user authentication mechanism using combina-
tions of three types of coarse-grained minute-level biometrics:
behavioral (step counts), physiological (heart rate), and hybrid
(calorie burn and metabolic equivalent of task). From our
analysis of 421 Fitbit users from a two-year long health study, we
are able to authenticate subjects with average accuracy values
of around 92% and 88% during sedentary and non-sedentary
periods, respectively. Our findings also show that (a) behavioral
biometrics do not work well during sedentary periods and (b)
hybrid biometrics typically perform better than other biometrics.

I. INTRODUCTION

With the rise of the Internet of Things (IoT), we are now
able to remotely monitor and control physical objects, such
as vehicles, buildings, health sensors, and many other smart
devices. One specific example of such smart devices are
wearables, with their ever improving sensing capabilities and
network connectivity. Wrist-worn smart devices, such as fit-
ness bands or smartwatches, are used for an increasing number
of applications, including user identification for third party
services [1], creating a vault for sensitive information (i.e.,
passwords, credit card information) [2], unlocking vehicles [2],
accessing phones and other paired devices, managing financial
payments [3], health and fitness tracking, and monitoring of
other individuals (e.g., child monitoring or fall detection of
elderly people).

While providing these new applications, wearables also
introduce various new security and privacy challenges. For
example, unauthorized access to a wearable device can pro-
vide an attacker with access to IoT systems controlled and
monitored by the wearable [4], [5]. Wearables often also
collect and store significant amounts of personal (and con-
fidential) user data, which need to be protected from theft.

As a consequence, it is essential to provide authentication
and security mechanisms for these devices. Existing wearable
device authentication mechanisms include knowledge-based
regular PIN locks or pattern locks [2], which suffer from
scalability concerns [6], since in the IoT world users are
flooded with passwords/PINs to obtain access to various ob-
jects and services. Additionally, knowledge-based approaches
require users to explicitly interact with a display (if present),
which can be inconvenient to use [6], [5]. One consequence
of this is that many users completely omit the authentication
process and leave their devices vulnerable to attacks. Finally,
knowledge-based approaches also suffer from observation
attacks such as shoulder surfing [6]. Therefore, in recent
years, biometric-based solutions have been proposed, since
they provide opportunities for implicit authentication, i.e., no
direct user involvement or attention is required [6], [5]. How-
ever, biometric-based authentication also has challenges and
shortcomings, specifically in terms of accuracy and usability.
For example, behavioral biometric-based approaches (e.g., gait
and gesture) often fail to authenticate a user during periods of
low physical activity (e.g., during sedentary tasks) [7], [5],
and physiological biometric-based approaches (e.g., ECG or
EEG signals) require very precise readings from expensive
sensors, which are not available on most wearables due to
computational and energy constraints [8].

II. RELATED WORK

Compared to mobile device user authentication, wearable
device user authentication is a relatively new research area and
traditional user authentication approaches are often not suit-
able for wearable devices, where computational capabilities
and energy resources are much more constrained, or where
low-cost sensors may be less accurate (noisy data record-
ings) or collect recordings only infrequently (e.g., once per
minute) [8]. For example, most wearable health trackers make
occasional heart rate measurements only instead of collecting
raw and much more detailed (but also more costly in terms
of energy and computational burden) ECG measurements.
Recently researchers have proposed authentication techniques
based on behavioral biometrics (e.g., gait [7], gesture [9], and
activity type [1], [5]) and physiological biometrics (e.g., PPG
signals [10]). Almost all of these studies are based on con-
trolled data collections and the accuracy of these techniques
has often been verified with limited numbers of subjects and

over short time periods only. All of these user authentica-
tion techniques are also context dependent, e.g., behavioral
biometric-based approaches do not work during sedentary
periods, a model developed for one activity type does not work
for other types, and heart rate values captured by a PPG sensor
are affected by activity types and their intensities. Therefore,
there is a need for a generic authentication approach that is
able to consider different combinations of easily obtainable
coarse-grained biometric data.

III. APPROACH

In this work, we propose an implicit and reliable wear-
able device user authentication scheme that relies on coarse-
grained minute-level biometrics that are widely available on
state-of-the-art wearables. While the combination of multiple
biometrics will result in highly accurate user identification,
the reliance on coarse-grained readings from sensors that are
commonly found on most fitness and health trackers makes
the proposed solution easy to deploy and resource efficient.
Compared to our previous work [11], [12], in this paper,
we investigate how different combinations of four common
biometrics perform when authenticating users during both
sedentary and non-sedentary periods. Before we describe the
details of the authentication models, we first discuss the
dataset, pre-processing steps, feature computation, and feature
selection. For the following analysis we use minute-level heart
rate, calorie burn, step counts, and metabolic equivalent of
task (MET) as sensor data.

A. NetHealth Study Dataset

The NetHealth mobile crowd sensing (MCS) study [11],
[12], [13], [14], [15], [16], [17], [18] began at the University
of Notre Dame in 2015. For this study, over 400 individuals
were recruited from the freshmen class and the students were
instructed to continuously wear a Fitbit Charge HR device that
was provided to them. The data being collected by the Fitbit
devices include minute-level heart rate, average heart rate,
calorie burn, metabolic equivalent of task or MET, physical
activity level/intensity (e.g., sedentary, light, fair, and high),
step count, sleep status, and self-recorded activity labels.
These collected data can be divided into three biometric
groups: behavioral (e.g., step counts, activity level/intensity),
physiological (e.g., heart rate), and hybrid (e.g., calorie burn,
MET) biometrics, where hybrid biometrics are derived from
both behavioral and physiological biometrics.

B. Data Pre-Processing and Feature Computation

Since we are using a real-world dataset, we first need to
clean the dataset before using it. Then, we need to segment
the continuous stream of biometrics, followed by feature
computations before we can build our authentication models.

1) Filtering Invalid Activity Data: A Fitbit device collects
heart rate data only when the device is actually worn, but the
device collects activity data all the time, even if the device is
not worn. Therefore, before we can use the activity data for
our analysis, we need to remove “invalid” periods, i.e., the

device is not worn. For our analysis, we consider data from
421 Fitbit users.

2) Data Segmentation and Feature Computation: For the
classification task, we first segment continuous heart rate,
calorie burn, MET, and step counts into five-minute non-
overlapping windows starting from a change of activity levels.
Since the sampling rate is one sample per minute, each window
contains five consecutive samples. When we segment the data
into windows, we start from the beginning of an activity level
and check for the next five minutes if the same activity level
continues. With this approach, we set the reference point at
the beginning of an activity level, since the biometrics vary
across different activity levels.

For each biometric, we compute 31 statistical features
in both time and frequency domains: mean (µ), standard
deviation (σ), variance (σ2), coefficient of variation (cov),
maximum (max), minimum (min), range (ran), coefficient
of range (coran), percentiles (p25, p50, p75, and p95), inter
quartile range (iqr), coefficient of inter quartile range (coi),
mean absolute deviation (mad µ), median absolute devia-
tion (mad Mdn), mean frequency (f µ), median frequency
(f Mdn), power (P), number of peaks (np), energy (E), root
mean square (rms), peak magnitude to rms ratio (p2rms), root
sum of squares (rss), signal to noise ratio (snr), skewness (γ),
kurtosis (κ), amplitude of the main frequency (a main) and
secondary frequency (a sec), and main frequency (f main)
and secondary frequency (f sec) of the Discrete Fourier
Transform (DFT) signal obtained using the Fast Fourier Trans-
form (FFT) function for each window of biometric data. For
non-sedentary periods, we also consider the activity level as
an additional feature. Therefore, we compute a maximum of
124 and 125 features for each window during sedentary and
non-sedentary periods, respectively.

In the rest of this paper, each biometric is referred to by
its initial: “C” (calorie burn), “S” (step count), “M” (MET),
and “H” (heart rate). Combinations of these letters are used to
represent the corresponding combinations of the biometrics,
e.g., “CH” represents a combination of calorie burn and heart
rate. Therefore, a biometric combination b ∈ {C, S, M, H, CS,
CM, CH, SM, SH, MH, CSM, CSH, CMH, SMH, CSMH}.

C. Feature Selection

To find relevant features, we first use the Two-sample
Kolmogorov-Smirnov (KS)-test with the null hypothesis H0:
“the two data sets are from the same distribution.” For each
feature, we calculate the p-value for data points from each
pair of subjects and drop a feature if most of its p-values
are higher than α = .05, i.e., the non-discriminating features.
We find that during sedentary minutes the behavioral biometric
(step count) has no significant feature. However, the behavioral
biometric contributes to a good number of significant features
during non-sedentary (i.e., lightly, fairly, and highly active)
minutes.

Next, we apply the Coefficient of Variation (COV)-approach
on features obtained from the KS-test. The feature that varies
more (i.e., higher cov values) across subjects has a higher

Fig. 1. Average ACC and FCD across different values of parameter xσt

during non-sedentary periods.

chance of capturing subject varying information, i.e., it can
be an influential feature and can better distinguish the subject
compared to less influential features that do not vary much.
Compared to our previous standard deviation-based approach,
the COV-approach is a better measure when comparing dif-
ferent features since cov is a measure of relative variability,
i.e., cov = σ/µ. For each biometric combination and its
associated feature set, we compute the cov of all features in
the set and then we find the maximum of the cov values of all
features in the set. Next, we compute a set of thresholds using
xσt ∈ {10, 20, ..., 90} percent of that maximum cov value.
Finally, for each threshold, we pick only those features that
have cov values higher than the threshold.

Finding a proper threshold xσt can be tricky; if it is chosen
too small, this may lead to a feature set containing redundant
and less important features, which may lead to overfitting. In
contrast, if the threshold is chosen too high, this may lead to
a very small feature set and poor accuracy. In Section IV-B1,
we present the optimal values of xσt.

A sample feature set obtained using the COV-approach
during non-sedentary periods with b = CM and xσt = 30%
consists of 27 features: “C” (µ, σ, max, min, ran, p25,
p50, p75, p95, iqr, mad µ, mad Mdn, rms, rss, a main,
a sec) and “M” (µ, max, p25, p50, p75, p95, P , E, rms,
rss, a main).

IV. USER AUTHENTICATION

In this section, we analyze the performance of different fea-
ture sets using the binary Quadratic Support Vector Machine
(q-svm), the best classifier to authenticate wearable device
users as found in our previous work [12]. Before analyzing
the performance, we prepare our training-testing datasets.
When preparing the datasets, the number of windows that we
consider is at least 10 times the number of features in the set.
This helps to avoid overfitting. For each feature set, we further
balance the dataset by randomly selecting the same number of
windows per activity level per subject. Next, we split the entire
dataset into 75%–25% for training and testing.

A. Performance Measures

To evaluate the performance of different feature sets we use
Accuracy (ACC) (in %) as the primary measure, which is the
fraction of predictions that are correct, i.e., (TP+TN)/(TP+
TN + FP + FN) × 100%, where terminologies have their

Fig. 2. Bar graphs of authentication Average ACC (in %) and FCD (in %)
variations across different biometrics of the COV-approach. The bars inside
each subplot are sorted based on average ACC and FCD values. The best
biometrics obtained from the two subplots are (a) b = CSMH and (b)
b = CM .

usual meaning in machine learning. We also consider Feature
Count Decrease (FCD) (in %) as an additional performance
measure. This is a measure of improvement in feature count
that a feature selection approach can achieve defined as
FCD = (nT − n)/nT × 100%, where nT and n are the
maximum number of features in the initial feature set that we
start with (i.e., 124 for sedentary and 125 for non-sedentary
periods with b = CSMH) and the number of features in a
feature set, respectively. If two feature sets achieve the same
accuracy, then the set with higher FCD, i.e., lower feature
count, is better since it will lower the computational load,
while achieving the same accuracy as the other set.

B. User Authentication Models

When building authentication models for a feature set with
N subjects (each having |W | random windows), we train and
test N binary q-svm classifiers. Each of these N classification
models is used to authenticate a subject from the other N − 1
subjects. Each subject is identified by an anonymous subject
ID. We perform wearable device user authentication separately
for sedentary and non-sedentary periods. First, we find the
optimal sets of parameters for different feature selection
approaches (Section IV-B1). Next, for each feature selection
approach, using its optimal parameter set, we then compare the
performance of different biometrics to find the best biometric
combination (Section IV-B2).

1) Finding Optimal Parameter Sets: To find the optimal
parameter set for each feature selection approach, we first
compute the average of all ACC and FCD values obtained
for all possible combinations of subjects and biometrics.
Then graphically we determine the optimal parameter setting.

TABLE I
AUTHENTICATION ACCURACY SUMMARY (l = 0 IS sedentary AND l = 1 IS

non-sedentary

l App- mean (SD) mean (SD) Best biometric’s mean
-roach ACC FCD ACC (b, n,N, |W |)

0 COV 53.12 (1.03) 98.62 (0.59) 55.46 (CMH,3,415,475)
KS 76.26 (12.46) 64.06 (15.24) 91.71 (CM,53,412,544)

1 COV 68.24 (10.03) 83.24 (6.67) 88.00 (CM,27,332,331)
KS 73.89 (9.80) 70.97 (13.26) 88.40 (CM,30,332,331)

Figure 1 shows an example of optimal parameter selection
for the COV-approach during non-sedentary periods. In this
figure we observe that with the increase of xσt the average
ACC decreases, but FCD increases. Therefore, we try to find
an optimal value of xσt at which both ACC and FCD achieve
higher values. We pick xσt = 30% as our optimal value since
after this xσt ACC drops and reaches saturation. Similarly,
FCD reaches saturation after xσt = 30% (Figure 1). We obtain
the xσt threshold value for sedentary periods using the same
approach.

2) Comparing Biometrics of Each Feature Selection Ap-
proach: First, we investigate how classifier performance varies
across different biometrics for the same feature selection
approach. Figure 2 shows the ACC and FCD variation across
different biometrics and their associated feature sets obtained
from the COV-approach. In Figure 2 (a) we observe that
during sedentary periods all biometrics except the behav-
ioral biometric (i.e., step counts) perform similarly. During
non-sedentary periods b = CM has the best performance
compared to the other 14 biometrics (Figure 2 (b)). Table I
summarizes the user authentication performance, where the
average ACC and FCD values are computed from all possible
15 biometric combinations under a specific feature selection
approach. Similarly, the last column in the table also represents
an average ACC, but it is computed for a particular biometric
combination under a specific feature selection approach. For
example, we obtain an average ACC = 55.46 for b = CMH
under the COV-approach during sedentary periods. On average
the KS-approach achieves a better ACC compared to the COV-
approach. However, the KS-approach has a poor average FCD
compared to the COV-approach. In the last column (i.e., “Best
biometric’s mean ACC” column) in Table I we observe that
the two hybrid biometrics (calorie burn (C) and MET (M))
together perform better than other biometrics. During non-
sedentary periods the KS- and COV-approaches have similar
performances. However, during sedentary periods there is a
big difference between KS- and COV-approaches.

V. CONCLUSIONS

To our best knowledge, our work is the first to use three
different types of less informative coarse-grained processed
biometric data (i.e., behavioral, physiological, and hybrid) to
authenticate the wearable device users implicitly during both
sedentary and non-sedentary periods.

Our findings from the different combinations of the four
biometrics (Section IV-B2) show that when behavioral bio-

metrics (step counts) fail to authenticate a user during seden-
tary periods, our multi-modal biometric-based approach can
still authenticate the users with a good average accuracy
(around 92% with Genuine Acceptance Rate (GAR) = .98,
obtained from a set of 412 subjects). Similarly, for non-
sedentary periods we achieve an average accuracy of 88%
with GAR = .99 using only 27 features (based on a set of
332 subjects). In general, we find that the hybrid biometrics
(calorie burn and MET) achieve better performance compared
to other biometrics. These accuracy values can further be
improved by considering various spatio-temporal factors that
can impact person-dependent biometrics. However, to make
the authentication approach generic, we build models with
relatively smaller feature sets.

REFERENCES

[1] A. Bianchi and I. Oakley, “Wearable authentication: Trends and oppor-
tunities,” it-Information Technology, vol. 58, no. 5, pp. 255–262, 2016.

[2] T. Nguyen and N. Memon, “Smartwatches locking methods: A compar-
ative study,” in Symposium on Usable Privacy and Security, 2017.

[3] S. Seneviratne, Y. Hu, T. Nguyen, G. Lan et al., “A survey of wearable
devices and challenges,” IEEE Communications Surveys & Tutorials,
vol. 19, no. 4, pp. 2573–2620, 2017.

[4] M. Shahzad and M. P. Singh, “Continuous authentication and authoriza-
tion for the internet of things,” IEEE Internet Computing, vol. 21, no. 2,
pp. 86–90, 2017.

[5] Y. Zeng, A. Pande, J. Zhu, and P. Mohapatra, “Wearia: Wearable device
implicit authentication based on activity information,” in Proc. A World
of Wireless, Mobile and Multimedia Networks (WoWMoM). IEEE, 2017.

[6] J. Unar, W. C. Seng, and A. Abbasi, “A review of biometric technology
along with trends and prospects,” Pattern recognition, vol. 47, no. 8, pp.
2673–2688, 2014.

[7] G. Cola, M. Avvenuti, F. Musso, and A. Vecchio, “Gait-based authen-
tication using a wrist-worn device,” in Proc. Mobile and Ubiquitous
Systems: Computing, Networking and Services. ACM, 2016.

[8] J. Blasco, T. M. Chen, J. Tapiador, and P. Peris-Lopez, “A survey
of wearable biometric recognition systems,” ACM Computing Surveys
(CSUR), vol. 49, no. 3, p. 43, 2016.

[9] S. Davidson, D. Smith, C. Yang, and S. Cheah, “Smartwatch user
identification as a means of authentication,” Department of Computer
Science and Engineering Std, 2016.

[10] N. Karimian, M. Tehranipoor, and D. Forte, “Non-fiducial ppg-based
authentication for healthcare application,” in Proc. Biomedical & Health
Informatics (BHI). IEEE, 2017.

[11] S. Vhaduri and C. Poellabauer, “Towards reliable wearable-user identi-
fication,” in Proc. Healthcare Informatics (ICHI). IEEE, 2017.

[12] ——, “Wearable device user authentication using physiological and
behavioral metrics,” in Proc. Personal, Indoor and Mobile Radio Com-
munications (PIMRC). IEEE, 2017.

[13] S. Vhaduri, C. Poellabauer, A. Striegel, O. Lizardo, and D. Hachen,
“Discovering places of interest using sensor data from smartphones and
wearables,” in Ubiquitous Intelligence and Computing (UIC), 2017 IEEE
International Conference on. IEEE, 2017.

[14] S. Vhaduri and C. Poellabauer, “Hierarchical cooperative discovery of
personal places from location traces,” IEEE Transactions on Mobile
Computing, 2017, doi: http://ieeexplore.ieee.org/document/8119982/.

[15] ——, “Impact of different pre-sleep phone use patterns on sleep quality,”
in Proc. Wearable and Implantable Body Sensor Networks (BSN). IEEE,
2018.

[16] S. Vhaduri, A. Munch, and C. Poellabauer, “Assessing health trends
of college students using smartphones,” in Proc. Healthcare Innovation
Point-Of-Care Technologies Conference (HI-POCT). IEEE, 2016.

[17] S. Vhaduri and C. Poellabauer, “Human factors in the design of
longitudinal smartphone-based wellness surveys,” in Proc. Healthcare
Informatics (ICHI), 2016 IEEE International Conference on. IEEE,
2016.

[18] ——, “Cooperative discovery of personal places from location traces,”
in Proc. Computer Communication and Networks (ICCCN). IEEE,
2016.

Hey, You, Keep away from My Device: Remotely
Implanting a Virus Expeller to Defeat Mirai on IoT

Devices
Chen Cao∗, Le Guan∗, Peng Liu∗, Neng Gao†, Jingqiang Lin†, and Ji Xiang†

∗ The Pennsylvania State University
† State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences

caochen11@mails.ucas.ac.cn, {lug14, pliu}@ist.psu.edu, {gaoneng, linjingqiang, xiangji}@iie.ac.cn

Abstract—Mirai is a botnet which targets out-of-dated
Internet-of-Things (IoT) devices. The disruptive Distributed De-
nial of Service (DDoS) attack in 2016 has hit major Internet
companies, causing intermittent service for millions of Internet
users. Since the affected devices typically do not support firmware
update, it becomes challenging to fix the holes for vulnerable
devices in the wild.

Both industry and academia have made great efforts in
amending the situation. However, none of these proposals is
simple to deploy and at the same time effective in solving
the problem. In this work, we design a collaborative defense
strategy to tackle the Mirai botnet. Our key idea is to take
advantage of human involvement in the least aggressive way.
In particular, at a negotiated time slot, a customer is required to
reboot the compromised device, then a “white” Mirai operated
by the manufacturer breaks into the clean-state IoT devices
immediately. The “white” Mirai expels other malicious Mirai
variants, blocks vulnerable ports, and establishes a heartbeat
connection with the server operated by the manufacturer. Once
the heartbeat is lost, the server re-implants the “white” Mirai
instantly. We have implemented a prototype of the proposed
system, and evaluation results show that our system can defeat
Mirai attacks effectively.

I. INTRODUCTION

On October 21st, 2016, Dyn, an infrastructure vendor, which
serves Internet’s top giants, such as Netflix and Twitter, was
attacked by the record Distributed Denial of Service (DDoS)
attack [1]. The attack was later found originated from a
botnet malware – Mirai. It was the same botnet malware
that attacked a security researcher’s blog website and had the
record 620 Gbps stream on September 21st [2]. Based on
the released code of the original Mirai, new Mirai variants
are emerging, which have the ability to exploit zero-day
vulnerabilities [3], [4]. Mirai variants mainly target digital
video recorders (DVRs) and IP cameras, which are mainly
old and low-end products which have no firmware update
capability. In addition, since the firmware is read-only, the
Mirai code can only stay in the DRAM of the device; rebooting
the device also wipes the Mirai code. That being said, once
infected, the only recourse is to wait for the device to be
rebooted since there is no path to remediation through any
type of reconfiguration. Given the large amount of vulnerable
devices and the fact that there is no easy way to patch them,
Mirai based attacks have become a time bomb which no one
can defuse.

Under the pressure from media, some manufacturers
claimed they were to recall vulnerable products. For example,
Hangzhou Xiongmai Technology planned to recall 4.3 million
Internet-connected camera products from the U.S market [5].
Although the company invested a huge time and energy to
amend the situation, it only mitigates later attacks, simply
because device users have no incentive to cooperate in the
recall process. They are not willing to spend time on packing
these devices and sending them back, because the Mirai mal-
ware does not effect the normal operations of the compromised
devices. As a result, there are still a lot of vulnerable devices
remaining in the wild.

The manufacturer could also contact customers to perform
remote diagnoses so as to minimize disruption to users. If
the device was found compromised, the customer agent could
explain the bad consequence of leaving the device in the wild,
and offer to send the customer an updated device. In return, the
manufacturer might provide some bonus for their cooperation.
However, a manufacturer may have already had millions of
products sold around the world [5]. It needs huge amount of
resources for the customer service to contact every user.

Academia is also active in solving the Mirai problem. In [6],
the authors proposed to deploy a “white” Mirai-like system.
The government is required to record vulnerable products
and force the related manufacturers to apply the “white”
Mirai approach. This solution inherits a bunch of code from
Mirai. Notably, like the malicious Mirai, the “white” Mirai
actively scans neighbor vulnerable devices and infects them.
The infected devices then become immune to any other similar
attack, as a result of blocked ports. There is a combat between
the “white” and real Mirai. Only the winner takes control of
the majority of the devices. In fact, Mirai has already infected
millions of devices, implying that it has a better chance to win
the game. In this sense, the solution is non-deterministic. Last
but not least, the solution has legal concerns. Although this
“white” Mirai system is pushed by the government, it remains
controversial as to whether it is illegal to compromise a device
without the consent of the user or the manufacturer.

Status quo: Neither industry nor academia has the effective
and feasible solution to defeat Mirai. This is evidenced by the
emerging Mirai variants such as satori [3] and persirai [4]
(Section II-B).

TABLE I
COMPARISON OF DIFFERENT SOLUTIONS

Simplicity Effectiveness Manageability
Recall 7 3 3
Customer Service 7 3 7
White Mirai 3 7 7
Our solution 3 3 3

Bot

ScanListenLoad

Scan resultImplant the Bot

Formatted Info

Fig. 1. Mirai’s infection process

In this paper, we propose a new solution to tackle Mirai
issues. The key idea of our solution is to take advantage of
human involvement in the least aggressive way. The idea of
kicking in human is based on the observation that rebooting
the device wipes the Mirai code in memory. At a high-level,
our solution resembles the “white” Mirai work – both solutions
utilize Mirai code. In addition to that, we require the customer
to cooperate with the manufacturer by rebooting the device at
a negotiated time slot. At this time slot, Mirai has very little
chance to kick in, while the “white” Mirai could break into
the device immediately. In particular, the manufacturer builds
an implanter server which remotely implants a virus expeller
into a vulnerable device to expel Mirai. Once implanted into
a device, the virus expeller blocks all the vulnerable ports
exploitable by Mirai. The implanter server is also responsible
for discovering the vulnerable devices and keeping the virus
expeller alive.

Table I compares our solution with three aforementioned
solutions. In this table, simplicity means the amount of work
that the customers and the manufacturer must be engaged in
to carry out the emendation. Effectiveness means how well the
solution can defeat Mirai. Manageability means the capability
that a manufacturer can keep track of the deployment of the
emendation.

In summary, our main contributions are:
1) We propose a simple, effective and manageable solution

to defeat Mirai.
2) We implement a proof-of-concept prototype and show

that it can successfully shield vulnerable devices from
Mirai’s infection.

II. EXPLAINING MIRAI

This section details Mirai’s design and implementation,
which are helpful in understanding the proposed defense. We
also describe several Mirai variants.

A. Mirai Analysis

As a botnet malware, Mirai uses the Client-Server (CS)
model to connect the bot with a Command and Control (C&C)

server. However, compared with traditional botnet malwares,
Mirai is special in its infection method. That is, it implants
bots through a dedicated server, not peers.

Figure 1 illustrates Mirai’s infection process, and the infor-
mation flow among the three modules, Bot, ScanListen
and Load. Bot is a program running in the vulnerable device.
It scans other devices to find ones having the same vulnerabil-
ity. If it finds one, that vulnerable device’s information will be
uploaded to ScanListen, which runs in a pre-known server.
The information includes login credentials, device IP address,
and vulnerable ports, etc. After receiving the information,
ScanListen formats it and sends it to Load, which runs
in the same server. Load then uses the information to infect
the target device to implant a bot. The following summaries
main features of the Bot module. After being implanted into
the vulnerable device, it performs the followings:

1) Prevents the device from rebooting. Bot only exits
in the memory. If the device reboots, it disappears.
Therefore, it prevent the device from rebooting in face
of a system failure by writing a request command
“0x80045704” for example1.

2) Hides process. Bot uses a random string to represent
its process name.

3) Prevents second infection. Bot opens port 48101 and
binds itself to it. If another Bot attempts to bind to this
port, it would be detected and the Bot would kill that
process. In this way, there is only one Bot running on
the target device.

4) Rebinds ports. Bot rebinds port 23(TELNET),
22(SSH), 80(HTTP) to block other botnet’s infection.

5) Expels other malwares. Bot scans the system to find
the fingerprint of other malwares. With root privilege, it
is able to kill other malware processes.

6) Scans other devices. Bot scans other devices to dis-
cover vulnerable ones. When scanning other devices,
with hard-coded 62 pairs of back-doored username and
password, Bot uses brute-force to guess the username
and password of other devices.

7) Performs DDoS attack. Bot connects to the C&C
server and waits for the attacking commands.

B. Mirai Variants
Since Mirai code was disclosed [7], several Mirai variants

have been identified, including the most recent satori [3] and
persirai [4]. Although these variants exploit new vulnerabilities
or add more passwords into their hard-coded database, they
share many similarities with the original Mirai. We abstract the
design of these Mirai variants as Scan-Load-Bot. In particular,
these malware scan device’s ports to verify whether the target
device is vulnerable and load the bot into the vulnerable device
if possible.

III. DESIGN

The key idea of our solution is to use a “tit for tat” strategy
to defeat Mirai, more generally, the Scan-Load-Bot malware.

1This command disables the “watchdog” on the device.

Load Service C&CScanListen Service

Scan Service

Attack Module Scan Module Kill Module

System fingerprint
obtaining Module

Heartbeat Module

Heartbeat Service

Virus Expeller

IP camera

Implanter Server

Web Service

Fig. 2. The Mirai-like system to defeat Mirai. (Gray modules are newly added
and grid modules are deleted.)

That is, the manufacturer implants “white” Mirai into the
vulnerable devices to expel other virus. We call our “white”
Mirai as Mirai-like system.

A. System Architecture

Figure 2 depicts the system architecture of our Mirai-like
system and its differences with the original Mirai-family. Two
most important components include a virus expeller, which
runs on the vulnerable device to expel other Mirai-family
bots, and an implanter server, which runs on the manufacture-
maintained server to scan and implant the virus expeller
into the vulnerable devices. The gridded modules are those
removed from the original Mirai. As our system derives from
Mirai, we manually remove the code that performs DDoS
attacks. The gray modules, i.e. scan service, heartbeat service,
heartbeat module and fingerprint module, are newly added to
the system.
The Virus Expeller. The virus expeller inherits code from
Mirai bot but distinguishes itself from malicious bot by
removing the attack module and scan module. Besides, as
depicted in figure 2, the virus expeller adds fingerprint ob-
taining module and heartbeat module. Fingerprint obtaining
module is responsible for collecting device’s information, such
as its unique ID, and kill the virus expeller process if the
information does not match. This module is used to avoid
the legal problem. If the virus expeller is implanted into a
vulnerable device which is produced by another manufacturer,
without its acknowledgment, legal problems arise. Therefore,
the fingerprint obtaining module can make sure the infected
device belongs to the exact manufacturer. Moreover, with the
cooperation from the customer, we assume the manufacturer
gets the consent from the customer to modify the device. The
heartbeat module is a client program for the heartbeat service
and reports aliveness periodically.

Once implanted into a vulnerable device, the virus expeller
expels Mirai-family bot consecutively. In other words, the
virus expeller’s core part is a blocking module. It rebinds the
ports for remote access as soon as it is implanted into a device.

As Mirai-like system deploys virus expeller in the resource-
constraint device, the resource used by the virus expeller

should be minimized. Otherwise, the perform of the product
can be severely impacted. For this reason, instead of perform-
ing the scan on the device, this function is moved to the
implanter server.
The Implanter Server. The implanter server runs five ser-
vices, i.e. Scan service, Load service, ScanListen service,
Heartbeat service and HTTP services.

Scan service inherits code from Mirai’s scan module. It
scans the target IP address list to discover the vulnerable
devices. However, in order to implant the virus expeller only
to the products of a specific manufacturer, the scan module
keeps this specific manufacturer’s information and ignores the
unmatched devices.

The Load service and ScanListen service are the same
with other Mirai-family load and scanlisten modules. They are
responsible for collecting the vulnerable devices’ information
from Scan service and implanting the virus expellers into
these devices. Load service is also used for downloading the
executable payloads from an HTTP service on the server to
the target vulnerable device.

Heartbeat service monitors each virus expeller’s aliveness
and re-implants them if some accidents happen, such as
unplanned power-on and power-off. This would clear the virus
expeller.

B. Detailed Design

The proposed system has two phases in the operation
of a Mirai-vulnerable device. In the deployment phase, the
customer cooperate with the manufacturer to implant our
code into the device. In the holding phase, the device works
normally, and our code keeps itself active within the lifetime
of the device.
Deployment Phase. If a Mirai-family bot has already existed
in a device, no virus expeller can be implanted into this device.
Because Mirai-family bot should have rebinded the vulnerable
ports for remote access. In order to move the needle, the cus-
tomer must cooperate with the manufacturer to clear existing
Mirai-family bot and implant our virus expeller. In this phase,
the customer provides its IP address list to the manufacturer,
and agrees on a random time with the manufacturer. At that
time slot, the customer reboots the vulnerable devices and the
malicious bots can be cleared. Then, the manufacturer utilizes
the Scan service to quickly scan the IP address list to locate
vulnerable devices and implants the virus expellers before
other Mirai-family bots can infect them. As the Mirai-family
malware does not know the time negotiated by the customer
and the manufacturer, our solution can effectively implant
the virus expeller and block spread of Mirai-family malware.
Furthermore, according to the experiment done in [8], it costs
around 98 seconds for Mirai to infect a device after being
connected to the Internet. As a result, there is little chance
for Mirai to infect these devices at the very moment that the
customer reboots them.
Holding Phase. Once implanted into a vulnerable device, the
Mirai-like system should make sure our virus expeller is kept

active in the device. We design a heartbeat module for this
purpose. In this phase, the heartbeat module in a virus expeller
sends back a heartbeat to the Heartbeat service in the remote
server periodically. At the same time, the heartbeat service
has a timer for each virus expeller and refresh the timer once
receiving a heartbeat, and continuously checks all the timers.
If one timer exceeds a specific value without receiving any
heartbeat messages, it means the related virus expeller has
lost the connection to the server. In this way, the manufacturer
could know whether a virus expeller is running on a specific
device. If this device is accidentally rebooted, the heartbeat
is lost immediately. Then Heartbeat service can invoke Scan
service to scan the IP address list and can re-implant the virus
expeller into the device.

IV. EVALUATION

We evaluate the proposed system using a Dahua DH-3004
digital video recorder, which is vulnerable to Mirai. The
implanter server runs in a Debian 8 Linux powered by an Intel
i7-4790 processors with 2GB memory. Although we use the
Dahua device in our evaluation, our solution does not depend
on any specifics of the Dahua device. It can be easily applied
to protect other Mirai-vulnerable devices.

We conducted three experiments to verify three essential
functions of this system in the two operational phases. First,
whether the proposed system can implant the virus expeller
into a target device. In particular, we tested if the following
process can be completed: Scan → ScanListen → Load →
Virus Expeller (in the target device) → Heartbeat. If the virus
expeller is implanted into a device, Heartbeat service can
receive the messages sent by it. Using wireshark running on
a PC which monitors the network packages, we measured the
time taken to implant the virus expeller since Scan service
starts to scan this device. On average, it takes about 10
seconds, which is much faster than the wild Mirai does. After
that, Heartbeat service periodically receive a message sent
from the virus expeller.

Second, after being implanted into the target device, the
virus expeller should resist to other Mirai-family’s infection.
We run the second experiment by implanting the virus expeller
into this target device firstly and run Scan service to scan this
specific device to see whether Load service can receive any
information. As Scan service, Scanlisten service and Load ser-
vice inherit code from Mirai, if our Mirai-like system can scan
the device and return related information to Scanlisten service,
this means the target device can be infected by Mirai-family
even there is a virus expeller inside. From Load service’s log
message, we can directly find the virus expeller is implanted
into this device and no more message is generated after that.
Besides, we used telnet to connect to this device manually.
As expect, we could not connect to this device. Therefore,
after being implanted into a device, the virus expeller can
successfully defeat other Mirai-family bots.

Third, whether the implanter server can re-implant the virus
expeller into this specific device if the device is accidentally
rebooted. We run this experiment by rebooting the device and

monitor the log of Heartbeat service. From the log, we can see
a list of operations. First, the virus expeller stops sending back
the heartbeat message. Second, the heartbeat service invokes
scan service to scan the target IP address list. Third, the
scan service finds the target device and the virus expeller is
implanted by the load service.

On our prototype, we ran three experiments and proved that
our system can successfully accomplish the three designed
function, effectively defeating Mirai-family malware.

V. CONCLUSION

We have presented a new mechanism to aid manufacturer in
amending the Mirai-vulnerable devices on the market. Differ-
ent from recalling or customer services, in which customers
are unwilling to cooperate, our solution needs the minimal
involvement of customers. Different from the “white” Mirai
proposed in [6], our solution does not need brute-force scan,
and can deterministically patch the compromised device.

A proof-of-concept prototype has been implemented. Exper-
imental results showed that the proposed solution is both sim-
ple and effective. Given the great number of Mirai-vulnerable
devices in the wild, our solution provides a promising solution
to mitigate the threats from Mirai-family malware, until all
the vulnerable devices are retired. Since our solution requires
close cooperation with the manufacturers, we plan to contact
the involved manufacturers to further carry out our solution in
real world.

REFERENCES

[1] “Ddos attack that disrupted internet was largest of its kind in history,
experts say,” https://www.theguardian.com/technology/2016/oct/26/ddos-
attack-dyn-mirai-botnet.

[2] “Hacked cameras, dvrs powered todays massive internet outage,”
https://krebsonsecurity.com/2016/10/hacked-cameras-dvrs-powered-
todays-massive-internet-outage/.

[3] “Warning: Satori, a mirai branch is spreading in worm style on
port 37215 and 52869,” http://blog.netlab.360.com/warning-satori-a-new-
mirai-variant-is-spreading-in-worm-style-on-port-37215-and-52869-en/.

[4] “Persirai: New internet of things (iot) botnet targets ip cam-
eras,” https://blog.trendmicro.com/trendlabs-security-intelligence/persirai-
new-internet-things-iot-botnet-targets-ip-cameras/.

[5] “Chinese firm recalls camera products linked to massive ddos attack,”
http://www.pcworld.com/article/3133962/chinese-firm-recalls-camera-
products-linked-to-massive-ddos-attack.html.

[6] J. A. Jerkins, “Motivating a market or regulatory solution to iot insecurity
with the mirai botnet code,” in 2017 IEEE 7th Annual Computing and
Communication Workshop and Conference (CCWC), Jan 2017, pp. 1–5.

[7] “Mirai source code,” https://github.com/jgamblin/Mirai-Source-Code.
[8] “Mirai infection experiment,” https://twitter.com/ErrataRob/status/7995564-

82719162368.

A Comparison of Data Streaming Frameworks for
Anomaly Detection in Embedded Systems

Murray Dunne, Giovani Gracioli, and Sebastian Fischmeister
University of Waterloo, Canada

{mdunne,g2gracio,sfischme}@uwaterloo.ca

Abstract—As IoT devices are integrated into our daily lives,
verification and security become of increasing concern. Using
anomaly detection methods, we can identify damaged and com-
promised devices by examining traces of their activity. Collecting
these traces with minimal overhead is a core requirement of any
anomaly detection system. We evaluate four publish-subscribe
broker systems on their viability for trace collection in the context
of IoT devices. Our comparison considers ordering and delivery
guarantees, client language support, data structure support,
intended use case, and maturity. We run each system on orig-
inal Raspberry Pis and collect network performance statistics,
measuring their capability to collected traces in a resource-
constrained embedded systems environment. We conclude with
recommendations for designing an anomaly detection system for
IoT devices.

I. INTRODUCTION

Embedded systems, such as Internet-of-Things (IoT) and
autonomous vehicles, are present in our daily lives. Such
systems interact with the environment through several sensors
and actuators, usually controlling the operation of critical
processes. Moreover, these systems generate a huge volume
of data, which makes the task of verifying the system speci-
fication difficult.

In this context, trace-based anomaly detection can monitor
the system behavior and prevent or/and recover from fail-
ures [1]. Anomaly detection aims at detecting execution pat-
terns that do not conform with the expected system behavior. It
can be done online (during run-time) or offline (by analyzing
recorded traces). Online anomaly detection usually receives
a stream of data as input and incrementally adapts anomaly
scores for the analyzed system, thus providing early detection
of an anomaly (when compared to the offline approach).

Trace-based online anomaly detection requires a data
streaming infrastructure with minimal performance overhead.
Examples of general-purpose streaming frameworks are Zmq,
Mqtt, ActiveMQ, Apache Spark, Redis, NATS, Apache Kafka,
and RabbitMQ. Other data streaming frameworks, such as
ROS, Polysync, Qnx PPS, OpenDDS, RTI Connext, and
OpenSplice are designed as a for building an entire product,
rather than as an ancillary monitoring application.

Figure 1 shows an overview of a general data streaming
framework infrastructure for anomaly detection in embedded
systems. Sources are different embedded systems, such as a
smart building or an autonomous vehicle, and generate streams
of data at run-time. Data from these systems is sent to a data
streaming framework. Processors connect to the framework,

receive and process data. The processor output is either written
back to the framework (to be consumed by another processor)
or indicates an anomaly. Finally, sinks receive data and can
perform an action, such as storing the data into a file [2].

Fig. 1: Overview of general data streaming framework orga-
nization.

Several data streaming frameworks have been proposed
recently. However, to the best of our knowledge, a comparison
among them targeting embedded systems has not been made
yet. Two metrics are important for data streaming framework
performance: (i) low run-time latency (the time difference be-
tween the instant a data is generated by sources and the instant
it is received by processors or sinks); and (ii) throughput, the
rate of data transmission a framework can support.

In this paper, we present a comparison of existing data
streaming frameworks focusing on embedded systems. We
compare Redis [3], Kafka [4], NATS Streaming Server [5],
and RabbitMQ [6] in terms of characteristics and performance
(latency and throughput). We choose them because they have
been receiving wide attention by the scientific community
and represent different classes of streaming framework (i.e.,
implemented with different languages, targeted at different
platforms, and supporting different features). The performance
comparison is carried out using a standard embedded system
platform (Raspberry Pi). Our results indicate that Redis and
RabbitMQ are suitable frameworks for embedded systems in
both features and performance.

The rest of this paper is organized as follows. Section II
overviews the main features of the analyzed frameworks.
Section III presents the performance evaluation. Section IV
discusses related works and Section V concludes the paper.

II. OVERVIEW OF DATA STREAMING FRAMEWORKS

Redis. REmote DIctionary Server (Redis) is an open-source
in-memory key-value database. It supports several data struc-
tures, including list, sets, maps, and bitmaps. Redis can be used

as a data streaming framework because it provides a publish-
subscribe interface. Redis clients publish data into channels
using the REdis Serialization Protocol (RESP). Instances that
subscribe to channels receive data in the same order it was
published. Redis also supports the integration with on-disk
databases. Moreover, it has a small memory consumption; in
a 64-bit system, 1 million keys (hash values), representing an
object with five fields, use around 160 MB of memory [3].
This small memory consumption is adequate for embedded
systems, which usually have limited memory. Redis provides
a replication mechanism based on master-slave, in which slave
server instances are exact copies of master servers. To reduce
the network Round Trip Time (RTT) latency over transmitted
messages, Redis implements Pipelining, making it possible
to send multiple commands to the server without waiting
for individual replies [3]. These replies are instead batched
together into a single response.

Kafka. Apache Kafka is a distributed streaming platform
written in Java. Kafka runs as a cluster of one or more
servers. The cluster stores streams of records (key, value, and
a timestamp) in topics. A topic is a category or a name in
which records are published. For each topic, the Kafka cluster
maintains a structured commit log, formed by partitions. Each
partition within a topic is an ordered sequence of records that
is continually appended to the structured commit log. Log
partitions can be distributed over the cluster servers, providing
fault tolerance. Clients subscribe to topics to receive/write real-
time streams using a binary protocol over TCP. Kafka provides
APIs for sources, processors, and sinks. Moreover, Kafka
provides persistent storage by writing topic records to the disk.
As Kafka is written in Java, it requires a Java virtual machine
(JVM). This may not be appropriate for resource-constrained
embedded systems due to JVM memory requirements [4].

NATS Streaming Server. NATS is an open-source data
streaming server written in Go. NATS streaming server embeds
a NATS server. Thus, the streaming server is not a server, but
a client to a NATS server. Clients also communicate with the
streaming server through the NATS server. All the commu-
nication uses a NATS streaming protocol based on protocol
buffers. NATS streaming server provides a publish-subscribe
interface based on channels. Clients send and receive messages
to/from channels. Messages can be stored in memory or disk
files. NATS provides a message logging mechanism to save all
messages produced in a channel, allowing historical message
replay by subject. Clients may specify a playback start position
in the stream of messages stored for the subscribed subjects
channel. NATS streaming server does not support clustering
of servers. However, it supports fault tolerance by allowing
the initialization of a group of servers. Within the group, only
one server answers to clients requests, while the others monitor
the main server. When the main server fails, another one takes
control and acts as the main server [5].

RabbitMQ. RabbitMQ is an open source message bro-
kering server maintained by Pivotal software. It implements
the Advanced Message Queuing Protocol (AMQP) (ISO/IEC
19464:2014), a standardized protocol for message brokering

services [6]. AMQP defines a two-stage architecture where
messages are first transmitted to an exchange which forwards
them to different queues depending on the exchange selected.
Exchanges exist for broadcasting copies to multiple queues,
addressing queues by name, or pattern matching. Messages in
AMQP queues are acknowledged upon receipt by the server,
and clients must acknowledge a message before it is removed
from the queue. Queues must be declared before use and may
be saved to disk, so their contents are not lost on restart.
There is no inbuilt mechanism for replaying a message history,
but RabbitMQ may be configured to store logs of message
activity. RabbitMQ supports clustering where queues exist on
only one node at a time, but are reachable from all nodes.
A configuration option enables replication of entire queues.
Nodes that store their data entirely in memory are available.

Table I summarizes the discussed features for each frame-
work. The four framework are mature; they all provide clients
in several languages, support disk storage, publish-subscribe
interface, and message ordering. They differ in how they
organize and process data internally, the languages in which
they are written, and communication protocol.

III. PERFORMANCE EVALUATION

A. Experiment Description
The evaluation compares the four frameworks on publisher-

to-subscriber latency and throughput. We compare messages
differing in size and frequency. To mimic an IoT installation
we use two first version Raspberry Pis (single 700MHz
ARM11 core, 512M RAM) for the subscriber and the pub-
lisher. The server is a Raspberry Pi Version 2 (quad-core ARM
Cortex-A7, 1G RAM). Figure 2 details the experimental setup.

Fig. 2: Overview of the experimental setup.

We consider message sizes of 256 bytes, 1 KiB, 100 KiB,
and 1 MiB. The 256 byte messages are analogous to command
or status update packets from simple IoT devices such as
thermostats or light bulbs. The larger messages represent
outputs from more complex devices, such as cameras, lidar,
and smart sensors for Industry 4.0. We generate messages with
a CSPRNG to eliminate effects from any internal compression.
We publish messages at 30Hz, 60Hz, and 100Hz. The lower
frequencies resemble routine status updates from passive IoT
devices (which are often much slower than 30Hz). The 60Hz
rate is a common camera FPS measure, and the 100Hz rate
may be used for high-frequency sensors.

We consider three factors: (i) choice of framework; (ii)
message size; and (iii) message frequency. All frameworks are
configured with persistence disabled because we are targeting
online anomaly detection. The clients and server are synchro-
nized using PTP, a network level time synchronization protocol

TABLE I: Features comparison among the analyzed frameworks.

Feature / Framework Redis Kafka NATS RabbitMQ

Supported data structures strings, hashes, lists
sets, bitmaps Structured commit log Queue Queue

Message ordering Yes Yes Yes Yes

Client-side languages About 49 different
languages

About 17 different
languages C#,Go,Java,Node.js,Python About 30 languages

Storage In-memory dataset
and saving in disk Disk In-memory or disk In-memory (saving logs in files)

Written in C Scala/Java Go C
Message publication Pub-Sub Pub-Sub Pub-Sub Pub-Sub
Replication Master-slave Replicated cluster Fault Tolerance/Partitioning Clustering

Protocol REdis Serialization
Protocol (RESP) Binary protocol over TCP Based on Google protocol buffer AMQP

capable of microsecond accuracy [7]. Latency is measured by
including the timestamp at which a message is sent within
the message itself. The subscriber then notes the timestamp at
which it receives the message and subtracts to find the latency.
Throughput is measured by multiplying the current message
size by the time it takes all the messages in a single run to
arrive, then dividing by the total time for that trial.

One sample of our experiment consists of one idealized
minute of message transmission. That is, at 100 Hz we expect
6000 messages to be transmitted in a minute. If transmission
takes longer than a minute, the experiment waits for all mes-
sages to be transmitted. For each configuration (4×3×4 = 48),
the experiment is run five times. Due to the large startup time
of these services, experiments on each framework were run in
order: Redis, Kafka, NATS, and then RabbitMQ. Therefore,
this is not a fully randomized experiment.

B. Results and Discussion

Consider the latency and throughput results in Figures 3
and 4. In our setup, both Kafka and NATS were unable to
transmit large messages. The subscribers hung after a handful
of messages were received for all 1 MiB messages to Kafka
and NATS, and also for the 100 KiB messages at 100 Hz to
Kafka. At high frequencies, Kafka dropped 15% of messages
(note that Kafka was configured to keep messages 1 ms, so
they would not persist to disk) and NATS dropped 3%. Redis
also dropped 0.16% of the 1 MiB messages at 60 Hz and
100 Hz. RabbitMQ dropped no messages.

Redis and RabbitMQ behave comparably in all analyzed
scenarios for both metrics. At small message sizes (256 bytes
and 1 KiB) throughput is comparable across all four systems.
This points to the networking capability of the platform as
the primary bottleneck for small messages. Even at high
message sizes, the throughput values remain comparable for
all frameworks except NATS. This is likely due to the NATS
Streaming server connecting to the main NATS server, adding
a level of indirection. This indirection also impacts the latency
of messages sent through NATS. The primary differences
between the frameworks are observed in the latency results.
RabbitMQ and Redis maintain lower and more consistent
latencies across all message sizes; Kafka is significantly slower
but still consistent, but NATS is more than an order of magni-
tude slower and more variable than the other frameworks for

all message sizes. We also observe an increase in the variance
of message latencies as the data size increases. Especially for
Kafka and NATS at 100 KiB and 1 MiB. This is likely due
to longer waiting times in buffers.

As an application of a data streaming framework in embed-
ded systems, consider the LIDAR sensor on an autonomous
vehicle. The autonomous vehicle could publish the current
power consumption of the sensor into the framework and
a detector would continuously analyze its state. When the
power state goes to off and other sensors are still on, then
an anomaly is reported. Alternately, the vehicle could pub-
lish the gear pattern from the autonomy software into the
data streaming framework. Detectors would then monitor this
stream for driving irregularities. The data streaming server
would not run on the same platform as the autonomy software;
it would run on a smaller, low power system solely tasked
with motoring the vehicle. The choice of embedded system
to run the framework is constrained by the operating system
requirements, the amount of data collected, and the complexity
of the anomaly detector. A cloud server may be needed as the
number of clients and detectors grows.

IV. RELATED WORK

There are comparisons between data streaming frameworks
available online, but they often lack scientific rigor (i.e., do
not entirely describe the experimental environment) and do
not target embedded systems. For instance, Yigal discusses
the throughput in Kafka and Redis but does not execute both
on the same platform [8]. Treat compares the throughput and
latency in Kafka and NATS, using a high-performance server.
They find that Kafka and NATS present a similar performance
in both metrics [9].

Data streaming frameworks have been used in several works
to detect errors and anomalies in different systems. Lopez et
al. discuss the characteristics and compare three stream pro-
cessing platform (Apache Spark, Flink, and Storm) in terms of
throughput using a threat detection application [10]. Solaimani
et al. used Apache Spark to detect anomaly for multi-source
VMware-based cloud data center [11]. Subramaniam et al.
proposed a framework to online detect anomalies (outliers
detection) in wireless sensors networks [12]. However, the
authors only implemented the framework in a simulator. Du
et al. proposed a network anomaly detector based on Apache

256 bytes 1 KiB 100 Kib 1 MiB
Packet size (bytes)

10 3

10 1

101

103

La
te

nc
y

(s
ec

on
ds

)
Latency by message size and framework at 30Hz

Redis Kafka NATS RabbitMQ

(a) Latency at 30Hz.

256 bytes 1 KiB 100 Kib 1 MiB
Packet size (bytes)

10 2

100

102

La
te

nc
y

(s
ec

on
ds

)

Latency by message size and framework at 60Hz
Redis Kafka NATS RabbitMQ

(b) Latency at 60Hz.

256 bytes 1 KiB 100 Kib 1 MiB
Packet size (bytes)

10 2

10 1

100

101

102

La
te

nc
y

(s
ec

on
ds

)

Latency by message size and framework at 100Hz
Redis Kafka NATS RabbitMQ

(c) Latency at 100Hz.

Fig. 3: Experimental latency results.

256 bytes 1 KiB 100 Kib 1 MiB
Packet size (bytes)

10 2

10 1

100

Th
ro

ug
hp

ut
 (

M
b/

s)

Throughput by message size and framework at 30Hz
Redis
Kafka

NATS
RabbitMQ

(a) Throughput at 30Hz.

256 bytes 1 KiB 100 Kib 1 MiB
Packet size (bytes)

10 1

100

Th
ro

ug
hp

ut
 (

M
b/

s)

Throughput by message size and framework at 60Hz
Redis
Kafka

NATS
RabbitMQ

(b) Throughput at 60Hz.

256 bytes 1 KiB 100 Kib 1 MiB
Packet size (bytes)

10 1

100

Th
ro

ug
hp

ut
 (

M
b/

s)

Throughput by message size and framework at 100Hz
Redis
Kafka

NATS
RabbitMQ

(c) Throughput at 100Hz.

Fig. 4: Experimental throughput results.

Storm [13]. Shi et al. implemented an online fault diagnosis
system based on Apache Spark for power grid equipment [14].

V. CONCLUSION

As security becomes a growing concern in IoT systems, we
turn to anomaly detection techniques to monitor the correct-
ness of devices. Collecting traces for such systems requires an
efficient data collection framework that will run on embedded
devices. We compared Redis, Kafka, NATS, and RabbitMQ as
publish-subscribe brokers on original Raspberry Pis.

Both Redis and RabbitMQ performed nearly identically.
They are both C programs designed with the specific goal
of lightweight message transmission, making them suitable
for embedded systems. Clients for both Redis and RabbitMQ
are widely available and require little more than an open
network socket. We would recommend either of these systems
for supporting trace-based anomaly detection in embedded
systems. However, we would not recommend Kafka or NATS.
Both are designed for web-based usage, focusing on delivery,
concurrency, and fault-tolerant guarantees, rather than raw
performance. These guarantees may not be required for an
anomaly detection system for IoT devices.

As future work, we plan to integrate and evaluate several
embedded system anomaly detectors, such as SiPTA [15] and
arrival curves [16] in a data streaming infrastructure based on
Redis targeting IoT and embedded systems. Other future work
could consider additional low-level publish-subscribe brokers,
and use a true real-time operating system.

REFERENCES

[1] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection for discrete
sequences: A survey. IEEE Transactions on Knowledge and Data
Engineering, 24(5):823–839, May 2012.

[2] Gianpaolo Cugola and Alessandro Margara. Processing flows of infor-
mation: From data stream to complex event processing. ACM Comput.
Surv., 44(3):15:1–15:62, June 2012.

[3] Redis website, Jan 2018. Available online: https://redis.io/.
[4] Apache kafka website, Jan 2018. Available online:

https://kafka.apache.org/.
[5] Nats website, Jan 2018. Available online: https://nats.io/.
[6] Rabbitmq website, Jan 2018. Available online:

http://www.rabbitmq.com/.
[7] J. Han and D. K. Jeong. A practical implementation of ieee 1588-2008

transparent clock for distributed measurement and control systems. IEEE
Trans. on Inst. and Meas., 59(2):433–439, Feb 2010.

[8] Asaf Yigal. Kafka vs. redis: Log aggregation capabilities and perfor-
mance, Nov 2016. Available online: https://logz.io/blog/kafka-vs-redis/.

[9] Tyler Treat. Benchmarking nats streaming and apache kafka, Dec
2016. Available online: https://dzone.com/articles/benchmarking-nats-
streaming-and-apache-kafka.

[10] M. A. Lopez, A. G. P. Lobato, and O. C. M. B. Duarte. A performance
comparison of open-source stream processing platforms. In 2016 IEEE
GLOBECOM, pages 1–6, Dec 2016.

[11] M. Solaimani, M. Iftekhar, L. Khan, B. Thuraisingham, J. Ingram, and
Sadi E. Seker. Online anomaly detection for multi-source vmware using
a distributed streaming framework. Softw. Pract. Exper., 46(11):1479–
1497, November 2016.

[12] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, and
D. Gunopulos. Online outlier detection in sensor data using non-
parametric models. In Proc. of the 32Nd VLDB, pages 187–198, 2006.

[13] Y. Du, J. Liu, F. Liu, and L. Chen. A real-time anomalies detection
system based on streaming technology. In 2014 Sixth IHMSC, volume 2,
pages 275–279, Aug 2014.

[14] W. Shi, Y. Zhu, T. Huang, G. Sheng, Y. Lian, G. Wang, and Y. Chen.
An integrated data preprocessing framework based on apache spark for
fault diagnosis of power grid equipment. Journal of Signal Processing
Systems, 86(2):221–236, Mar 2017.

[15] Mohammad Mehdi Zeinali Zadeh, Mahmoud Salem, Neeraj Kumar,
Greta Cutulenco, and Sebastian Fischmeister. Sipta: Signal processing
for trace-based anomaly detection. In Proc. of the EMSOFT, pages 1–6,
New Dehli, India, Oct. 2014.

[16] M. Salem, M. Crowley, and S. Fischmeister. Anomaly detection using
inter-arrival curves for real-time systems. In ECRTS, France, 2016.

A secure IoT architecture for streaming data analysis and anomaly detection

Safa Boudabous, Stephan Clémençon, Ons Jelassi, Mariona Carós Roca,
Image, Data & Signal Department (IDS)

Télécom ParisTech, LTCI, Université Paris Saclay
Paris, France

firstname.lastname@telecom-paristech.fr

Abstract—Discovery of repeating temporal patterns and pre-
diction based on time stamped data generated by IoT services
raise important methodological issues. A typical predictive
problem, addressed in this paper, consists in the early detection
of change points or anomalies, that may be caused by a
malicious use of the system for instance. Although online
anomaly detection is now the subject of much attention in the
data science literature, motivated by crucial industrial appli-
cations such as predictive maintenance and health monitoring
of complex infrastructures, the rapidly changing environment
inherent to most IoT applications makes this task even more
challenging. Beyond the crucial control of the false alarm
rate, the quasi real-time analysis must take into account the
efficiency of computing resources and the possible security
risks in data transfers over the network. We propose here
an architecture for analyzing IoT datastreams data and a
dedicated method for on-line anomaly/novelty detection, based
on nonparametric (mean discrepancy) test statistics and mul-
tiple hypothesis testing techniques. Numerical results based on
experiments involving synthetic datastreams and real energy
consumption datastreams provides empirical evidence of the
relevance of the methodology proposed.

Keywords-time series; IoT data; secure Machine Learning
architecture; Anomaly detection; change point detection.

I. INTRODUCTION

With an expected total number of 25 billion of con-
nected smart devices by 2020, Internet of Things (IoT in
abbreviated form) is expected to enable the development
of a wide variety of applications, ranging from domotics
to heathcare through predictive maintenance of energy net-
works for instance. The exponential growth of IoT un-
doubtedly offers exciting opportunities but also presents
great scientific challenges, in the development of accurate
massive datastreams analytics and in the design of secure
and efficient system architectures to implement them. In
particular, a minimal latency when processing streaming data
in a secure architecture is a major requirement. Part of the
data must be analyzed locally, by the smart devices with high
constraints of resources or in middlewares closest to them,
in order to preserve privacy, to guarantee personalization
or because of bandwidth limits, while other treatments like
statistical learning based on the information collected by
several sensors at the population level can be performed in
a central equipment. Change and anomaly detection in time
series has been the subject of a good deal of attention in the

statistics and machine-learning literature, see e.g. [1] and the
references therein. However, most documented techniques
are hardly scalable (when considering multivariate high
frequency data series) and do not meet the low-latency
standards for quasi-real time analysis, as required in the
detection of cyberattacks for instance. In the dynamically
changing environment inherent to most IoT applications, the
sensory data streams collected from connected objects are
often influenced by the underlying hourly, daily, and weekly
rhythms of human activity. This is reflected by the occurence
of a non-stationary behavior in the statistical distribution
of the data streams. Due to this complex environment
setting, the baseline hypothesis, made by most (sequential)
anomaly detection methods, that the distribution is normal
or stationary, is not fulfilled in general. Hence, the crucial
need for an efficient approach that allows early and accurate
abnormal behavior detection in a computationally efficient
way.

In this paper, we present a mathematical model for
automated online anomaly detection in time stamped datas-
treams. The distributed processing of certain data analysis
task is investigated. The background is presented in Section
2, together with related works. In Section 3, we develop
our framework for on-line anomaly detection based on
streaming data, while Section 4 describes how the method
we promote can be integrated in a global architecture for IoT
data collection, processing/learning and alarm generation,
combining distributed components and a client-server model.
Next, Section 5 presents our evaluation on synthetic and
real-world datasets. Some concluding remarks are eventually
collected in Section 6.

II. RELATED WORKS

The oldest techniques for anomaly detection in datas-
treams are based on statistical inference. Anomalies being
assumed to be rare, they are assumed to lie in the comple-
mentary sets of high probability regions of the probabilistic
model. The statistical procedure then consists in computing
such regions of the feature space (referred to as tolerance
regions or minimum volume sets) from a robust distribution
estimate, based on data composed of ‘normal’ observations
in their vast majority, alarms being raised as soon as data
fall outside the region thus built. Such anomaly detection

algorithms were first applied for statistical process control
(SPC), providing a monitoring tool so as to control the
quality of a product during a continuous manufacturing
process. These approaches assume that the distribution of
the process prior to a change is fully known. More re-
cently, in [2], a generic analytics engine which provides
robust alerts upon changes and anomalies in sensory data
streams has been proposed. The engine combines different
nonparametric change detection algorithms. Depending on
the type and the nature of the considered time series, the
authors proposed to use test statistics-based methods such
as the two-sample Kolmogorov-Smirnov test in order to
detect deviation from stationarity in univariate sensory data,
to implement an algorithm based on k-nearest neighbor
estimation so as to detect changes in multiple sensor data
streams and the algorithm 1-class SVM for change detection
in non-periodic non-stationary multi-sensory streams. More
generally (see [3]), each adaptive streaming algorithm must
define four main components:

1) memory management that explicits the data storage
primitives and the forgetting mechanism to dynami-
cally update data samples,

2) change detector that defines a mechanism to identify
change point in the stream,

3) learning component that defines a method to update
the learned model when new instances arrive,

4) loss estimator that allows generalization error quan-
tification of the prediction model based on the envi-
ronment feedback.

III. ANOMALY DETECTION METHOD

A. Solution Pipeline

In this paper, we propose a (nonparametric) statistical ap-
proach to anomaly detection that encompasses the dynamic
nature of data streams generated by IoT applications. Detec-
tion of abnormal behaviors in daily user energy consumption
shall be our running example throughout the article. Such
data streams are characterized by a periodic daily consump-
tion pattern that reflects the living habit of the user. These
data are also impacted by exogenous variables and events,
exhibiting many change points, even in the normal state.
Hence the need for adaptive learning algorithms able to
detect sudden unusual changes in the data stream.

Our algorithm is a two-stage process, as depicted by Fig.
1. The first step (‘cold start’) aims at learning the normal
behavior of the system and compute a set of statistics pro-
viding an up-to-date summary of the observed process. The
second step consists in identifying anomalies in data streams
on near real-time and incrementally adapt the learned model
to significant changes in the data in order to control the
false alarm rate in particular. The learning step can be
performed either offline or online and takes a period of K
weeks (K ≥ 2) to construct/update the model. The method

maintains three important informations about the observed
data: a representative sample of the data, a set of descriptive
statistics (the mean, the standard deviation, the minimal
and the maximal value) and a model for the distribution of
changepoints in the normal state of the system. This provides
a one-week model of the data. Initially, the sample stores the
first observed week of data and then we compute statistics
measuring deviations between the stored values and the
new observed instances. The detection step is a sequential
process with two components: The first component consists
of an iterative statistical inference method that uses a set of
nonparametric test statistics to detect abnormal sequences
in the streaming data. It starts by collecting a sample of N
instances (N is a tuning parameter, picked larger than 20 in
our running example) and then, each new observed instance
is added to the sample and several test statistics (measuring
each a specific possible deviation from the normal behavior)
are computed in order to detect the occurrence of various
types of anomalies in the data. Depending on the results of
the multiple tests, an alarm is raised if a significant deviation
is observed, using the false discovery rate (FDR) method.
Thus, if an anomaly is detected, we use the test results
and the stored descriptive statistics to define the type and
occurrence time of the anomaly and we update the sample in
order to gather new observations. If no anomaly is detected,
we keep repeating the same process. Note that, although the
size of the current data sample is variable, it stays bounded
in practice by a maximum value M limited by the memory
required by the process and the size of the representative
sample of the normal behavior. The method relies on a
multiple hypothesis procedure in order to control the false
discovery rate. The second component focuses on detect-
ing statistically significant deviations in the distribution of
the changepoints. Using a Poisson process (we can refine
the approach by considering straightforward nonparametric
extensions, i.e. non-homogeneous Poisson processes), we
compare the current count of changepoints over a given
time interval T to the distribution of changepoints counts
of the normal behavior in the same interval. We mainly
detect changes in variance and constant readings. Those
two cases of deviations affects considerably the distribution
of the changepoints in the data. During the detection and
whenever no anomaly is detected, the learned model is still
updated by refreshing the three informations stored in the
learning step.
Lastly, we point out another technique used to control the
false discovery rate and to adapt the normal behavior to
changes which is the user feedback. The user can confirm
that a detected anomaly corresponds to an abnormal behav-
ior, not to a change of use. In fact, the accuracy of the data is
affected by concept drift in data streams even if an updating
mechanism is set up. Thus, the interaction with user allows
adjusting the stored sample of the normal behavior of the
distribution of the observed process.

Figure 1. Proposed Solution Architecture

B. Homogeneity Tests Statistics for Anomaly Detection

As the system may deviate from its normal behavior in
many ways, anomalies can be of various types. In order to
accurately detect them in the datastreams, we need to select a
variety of relevant test statistics to compute. As said above,
the distribution of the streaming data in the normal state
is generally very complex, exhibiting many change points.
Nonparametric tests are thus preferred in order to avoid
wrong model assumptions, jeopardizing the procedure and
yielding a too high false alarm rate. For that, we consider
four classical nonparametric test statistics: Wilcoxon Signed
Rank test, Kolmogorov-Smirnov test, Fligner test and Mann-
Kendall test. The three first ones are sample tests that will
be applied on the sample representing the normal behavior
and the observed sample. The last one needs only the current
values to compute its score. When Wilcoxon Signed Rank
statistic tests detects when a possible change occurs in the
sequence, Kolmogorov test focuses on general changes in
the data distribution, Fligner test looks for changes in the
variability of the data and Mann-Kendall test is used to
detect a change in the monotonic trend in the data. The
combination of those tests allows detect a large variety of
anomalies. As hypothesis testing follows here a P-value
based approach, each test will be analyzed through the
related computed P-value. When no anomaly is detected, the
value of the P-value of a given test remains high, between 0.3
and 1.0. Otherwise, it decreases considerably and depending
on the sensitivity of the test, it may attend low values. Our
approach relies on the Benjamini-Hochberg procedure in
order to combine the results of the various testing procedures
and control the false discovery rate (FDR). Of course, the
power of the global test of anomaly occurence increases
as a larger number of test statistics are incorporated in the
procedure.

C. Estimation of ChangePoint Distribution

1) ChangePoint Modeling: For changepoint detection, we
use the ChangePoint Model method (CPM) proposed by
Ross in [4]. It provides a statistical framework for change-
point detection that provides a set of functions to cover

different runtime environments: one can choose between
offline and online setting and can also select a parametric
or a nonparametric testing approach. We are interested in
the online nonparametric changepoint modeling that allows
to identify changepoint in data sequentially even if the
parameters or the distributional form of the observations are
unknown. The sequential processing consists of applying se-
quentially the offline approach. The CPM method considers
the problem of changepoint detection as a hypothesis testing
one. Hence, under the null hypothesis, it assumes that no
change point exists and the observations are independent and
identically distributed according to some distribution F0. If
a change point exists at some time τ , then the observations
have a distribution F0 prior to this point, and a distribution
F1 afterwards, where F0 6= F1. Since the moment where the
changepoint occurs is not known in advance, the selected test
statistics will be computed for each instance in the sequence
and the maximum value will be used to make a decision.
If the maximum value exceeds some appropriately choosen
threshold, we conclude that a change point has occurred
and the best estimate of the change point location will be
immediately following the value which maximizes the test
statistics (because the higher the value of the test statistic,
the smaller the P-value). In our solution, we used the CPM
framework associated with the Mann-Whitney test.

2) Changes in Poisson Distribution: The second compo-
nent aims at monitoring the distribution of changepoints. We
assume that the changepoints in the considered data stream
follow a Poisson distribution that offers a great flexibility
when it comes to model the law of a counting process and
detect possible intensity changes. Initially, in the learning
step, we store the average count of changepoints at a given
timeslot I for each day of the week, in order to account for
seasonality features. Thereafter, in the detection step, we
will count the number of change points that occurred. The
baseline idea of this function consists of testing how likely to
get the observed number of change for a specific timeslot I
in a given day of the week. We define a Poisson distribution
where the parameter λ is estimated by the average count of
changepoints at the same interval I as thatcomputed in the
learning step. We use the survival function in order to get a
P-value that, when compared to the preselected significance
level, allows to decide whether an anomaly occurs or not.

IV. GLOBAL ARCHITECTURE

Despite the promising future of IoT, security and privacy
still pose serious threats. Our algorithm can be imple-
mented in distributed devices, in a middleware or in a
centralized server. In many fields such as smart homes,
sensors need to make decisions locally or communicate with
external sources based on the data collected to improve
decision-making. We propose to update the CPM package
in the server with parameters learned in similar devices. An
anomaly threshold learned in a device is broadcasted to other

devices having the same behavior. The data processing in
our architecture (Fig. 1) involves two components: a local
modeling from sensor data and a centralized correlation.
Each local source calculates data statistics based on its local
data, which is not sent over the network preserving privacy,
learns its nominal function, adjusts threshold values based
on user feedback, alerts in the event of anomaly detection
and raises only statistics at the central site to obtain a
global consolidated data modeling view and an inventory
of detected anomalies in similar sensors. Our central server
applies a clustering procedure to identify sensors exhibiting
similar behavior. The consolidated model is, then, shared
between all sensors in the same cluster, while detailed
statistics are kept in the sensor, so as to preserve privacy.

V. PERFORMANCE EVALUATION

A. Datasets Description

We used both a synthetic dataset and a real dataset to
assess the performance of our algorithm.
Synthetic Dataset: We implemented a function that allows
to generate different random simple and compound time
series. The simple time series are formed by a random
combination of n periodic signals (1 ≤ n ≤ 5). Whereas, the
compound time series have n underlying intensity patterns.
The resulted synthetic data represents a noisy periodic
signal. We generated different types of anomalies:

• Mean shift: adding a constant to the selected period of
time series to increase its amplitude.

• Variance shift: incorporating a white noise or adding a
high-frequency oscillating signal.

• Constant readings: multiplying the time series period
of time by zero and adding a little noise.

• Outliers: adding values that are much higher than the
normal data values in specific points.

• Trend: applying a monotonic increasing linear function
to the selected period.

Real Dataset: Data generated by 8 sensors deployed in a
building in order to monitor the hourly electricity consump-
tion. It covers a period of one year from January 28th until
December 30th, 2015 in 8731 records. The data streams
are not annotated, we visually inspected the time series
and identified 5 types of long-duration and short-duration
anomalies. We used this classification for result evaluation.

B. Experiments and Results

In order to evaluate the quality of the process, we used the
area under the ROC curve criterion. For the synthetic data
streams, we tested two experiment settings: injecting only
the four first types of anomalies without adding a trend and
the trend anomaly type. We plotted several ROC curves to
evaluate the global performance of the algorithms and the
performance by considering one type at a time.

In the synthetic dataset, the algorithm detects well the
different anomaly types (see Fig. 2). Higher true positive

rates for mean shift and variance shift detection are obtained
when trend anomalies are not considered (Fig. 2, 3) .

The algorithm gives satisfying results when applied to the
real dataset. We considered only the anomalies we annotated
manually. Hence, some anomalies particularly outliers were
difficult to detect or assimilated to concept drift.

Figure 2. Synthetic Dataset Experiments Results: ROC Curves

Figure 3. Synthetic Dataset Experiments Results (All Anomalies’ Types):
ROC Curves

VI. CONCLUSION

We presented a novel two-stage machine learning method
for anomaly detection (AD) in IoT sensors datastreams. The
first step consists in learning the normal behavior of the
timestamped data, while the second one identifies deviations
and update the AD engine. The detection process is based
on two tasks: detecting anomalous sequences in the time
series and monitoring the distribution of the changepoints
by using changepoints modeling, hypothesis testing and
false discovery rate control. Parameters and thresholds are
updated with a global view calculated on sensors clusters in
a central server. We applied this method to synthetic data
and to real energy consumption data streams.

ACKNOWLEDGMENT

The authors would like to thank Teralab, DcBrain and the
industrial chair ”Machine Learning for Big Data”.

REFERENCES

[1] R. Killick and I. Eckley, “changepoint: An r package for
changepoint analysis,” J. Statist. Soft., 2014.

[2] A. A. Gilad Wallach, Lev Faivishevsky, “Change and anomaly
detection framework for internet of things data streams,” ICML
Anomaly Detection Workshop, 2016.

[3] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and
A. Bouchachia, “A survey on concept drift adaptation,” ACM
Computing Surveys (CSUR), vol. 46, no. 4, p. 44, 2014.

[4] G. J. Ross et al., “Parametric and nonparametric sequential
change detection in r: The cpm package,” J. Statist. Soft., 2013.

Anomaly-based Intrusion Detection of IoT Device
Sensor Data using Provenance Graphs

Ebelechukwu Nwafor, Andre Campbell and Gedare Bloom
Department of Electrical Engineering and Computer Science

Howard University, Washington, DC 20059
Email: ebelechukwu.nwafor@bison.howard.edu

Abstract—The Internet of Things (IoT) has revolutionized the
way humans interact with devices. Unfortunately, this technologi-
cal revolution has been met with privacy and security challenges.
One major concern is the notion of malicious intrusions. A
common way of detecting a malicious intrusion is by treating an
attack as an anomaly and using anomaly detection techniques
to detect the source of intrusion. In a given IoT device, prove-
nance, which denotes causality between system events, offers
immense benefit for intrusion detection. Provenance provides
a comprehensive history of activity performed on a system’s
data, which indirectly ensures device trust. In this paper, we
propose an approach to intrusion detection of IoT devices that
leverages sensor data flow as seen through provenance graphs.
In this approach, an observed provenance graph is compared
to an application’s known provenance graph. This comparison
involves the dimensionality reduction of a provenance graph to a
vector space representation and similarity metric. We evaluated
our approach on an IoT application which simulates a climate
control system.

Index Terms—Anomaly detection, Intrusion detection, Internet
of Things, Data Provenance

I. INTRODUCTION

IoT devices have become an essential part of our daily lives
in commercial, industrial, and infrastructure systems. These
devices offer benefits to consumers by interacting with the
physical environment through sensors and actuators, which
allows device automation thereby improving efficiency. Unfor-
tunately, the proliferation of IoT devices has led to an increase
in the number of remotely exploitable vulnerabilities leading
to new attack vectors that could have disastrous financial and
physical implications. In 2015, security researchers demon-
strated a vulnerability on the Jeep vehicle which allowed
remote control of the automotive system over the Internet
[1]. In 2016, researchers discovered a vulnerability that allows
Internet connected smart thermostats to be subject to remote
ransomware attacks in which an attacker gains sole control of
the thermostat until a fee is paid [2]. These are a few examples
of some of the potential malicious vulnerabilities that could
have devastating, long-lasting impact on an IoT system.

This material is based upon work supported by the National Science
Foundation under Grant No. CNS-1646317 and the U.S. Department of
Homeland Security under Grant Award Number 2017-ST-062-000003. Any
opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of
the National Science Foundation and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of the U.S.
Department of Homeland Security.

Intrusion detection [3] is the process of discovering mali-
cious exploits in a system. One way of detecting an intrusion is
by the use of anomaly detection techniques. An anomaly, also
referred to as an outlier, is data that deviates from the normal
system behavior. Anomalies could be indicative of a system
fault or that a system has been compromised by a malicious
event. Due to the sensitive nature of safety critical systems,
detecting malicious attacks is of utmost importance.

We propose an approach to identifying anomalous sensor
events using provenance graphs. This approach involves the
use of a similarity metric to compare observed provenance
graphs with provenance graphs derived from an application’s
normal execution. The result is an anomaly score which
is compared with a previously set threshold to classify an
observed provenance graph as either anomalous or benign. We
evaluate the effectiveness of our approach with a sample IoT
application that simulates a climate control system.

II. GRAPH SIMILARITY ANOMALY DETECTION

A. Provenance Graphs

Provenance denotes the origin of an object and all other
activities that occurred on that object. Data provenance, also
known as data lineage, can be defined as the history of all
activities performed on a data object from its creation to its
current state. Provenance ensures data trust [4]. It establishes
causality between entities contained in a data object through
information flow tracking thereby it allows for the verification
of a data source. Provenance is represented by a directed
acyclic graph (DAG) in which vertices represent data entities
and the edges correspond to the interaction between them.

Most provenance collection frameworks developed to track
provenance use system level event sequences in an operat-
ing system [5]–[7]. For IoT devices, containing limited or
no operating system functionality, it is essential to use a
provenance collection framework that places less emphasis on
an operating system and more emphasis on application level
information flow tracking. For our provenance graph genera-
tion, we use PAIoT [8], a provenance collection framework
which tracks the information flow of sensor-based events in
an IoT device. In PAIoT, sensor data containing observation
information is represented as a provenance graph. Sensor
events are instrumented in the application source code. Each
sensor data generated is defined as a tuple (t, e, a, s1, r1)
where t represents the time a sensor reading was generated, e

Agent
Activity
Entity

w
G
B

w
G
B

w
A
W

w
G
B

a
O
B
O

w
A
W

w
G
B

w
A
W

w
G
B

w
G
B

w
G
B

wDB wDB wDB wDB wDB wDB

wAW:wasAssociatedWith
wGB:wasGeneratedBy
aOBO:actedOnBehalfOf
wDB:wasDerivedBy

Fig. 1: Components of a provenance graph where nodes
represent types (agent, activity, and entity) and edges represent
relationships between types

represents the sensor data, a represents activity performed on
sensor data, s1 represents a sensor identifier, and r1 represents
the device information. Tuple information is constructed as
a provenance graph and stored in a graph database (Neo4j)
where further processing and query analytics can be performed
on provenance data.

A provenance graph is a directed acyclic graph, p = (V,E)
where V is a set of vertices V = {v1, ..., vn} such that
vi = (type, value) and E is a set of edges E = {e1, ..., en}
where ei = (vs, vd, label) and vs, vd are source and destination
vertices. Two vertices vx, vy are equal (denoted vx = vy)
if vx.type = vy.type and vx.value = vy.value. Two edges
ex and ey are equal (denoted ex = ey) if ex.vs = ey.vs,
ex.vd = ey.vd, and ex.label = ey.label. We use the union
operator ∪ over edge sets in the usual way of the union of
sets.

Types may take on one of the following: Agent, Entity,
and Activity. An agent is an actor that is represented by
an identifier (e.g., sensor or device name). An entity is an
event, which represents data that is produced as a result of
an activity. An activity is an action performed by an agent or
entity (e.g., read, update, create, delete). label takes on one of
the following values: wasGeneratedBy, used, wasInformedBy,
wasDerivedFrom, wasAttributedTo, wasAssociatedWith, acte-
dOnBehalfOf.

B. Graph Similarity

Similarity is a measure of how identical two objects are,
for example, by measuring the angle between objects (us-
ing cosine similarity) or a linear distance (using euclidean
distance) between the objects. In this work, we use cosine
similarity as our similarity metric. This was inspired by the
use of information retrieval techniques for query ranking. e.g.,
given a corpus D = {d1, ..., dn}, and query, q, how do we
find document(s) {dx,dy} which are similar to q and rank
them by order of importance. Cosine similarity is a measure
of orientation between two non-zero vectors. It measures the

cosine of the angle between the vectors. Two vectors which
are at an angle of 90◦ have a similarity of 0, two vectors
which are identical (with an angle of 0◦) have a cosine of 1,
and two vectors which are completely opposite (with an angle
of 180◦) have a similarity of -1. Since we are concerned with
the similarity between vectors, we are only concerned with the
positive values bounded in [0,1]. The cosine similarity between
two vectors, X and Y , is computed by:

cos (θ) =
X · Y

‖X‖ · ‖Y‖
=

∑n
i XiYi√∑n

i X
2
i ×

√∑n
i Y

2
i

In order to apply cosine similarity between provenance
graphs, we compute a vector representation which reduces
the graph into an n-dimensional vector space where n rep-
resents the total number of edges contained in the union
of all edge sets. Figure 2 illustrates the vector space con-
version of provenance graphs. p1, and p2 which con-
sists of vertices A,B,E, F,G, I, J, S,R and edge labels
aOBO,wAW,wGB,wDB. The vector space representation
of u1 is the occurrence of edges contained in the edge set
of graph p1, which are also found in the collective union of
edge sets. Algorithm 1 further outlines the concept of graph
to vector conversion.

C. Anomaly Detection on Provenance Graphs

Anomaly detection involves the use of rule-based, statistical,
clustering or classification techniques to determine normal
or anomalous data instances. The process of determining all
anomalous instances in a given dataset is a complex task.
A major challenge in anomaly detection is providing the
right feature set from the data to use for detection. Another
challenge exists in defining what constitutes as normal system
behavior. Most anomaly detection using point-based data often
fail to include the dependencies that exist between data points.

Due to the ubiquitous nature of IoT devices, there are a wide
array of vulnerabilities associated with them. In designing
our anomaly detection framework, we expect an attacker’s
footprint is reflected through the data flow as depicted in the
provenance graph. Our algorithm detects attacks such as false
data injection, and state change as depicted in information flow
of sensor events in provenance graphs.

Algorithm 1: Graph to vector conversion.

1: procedure GRAPHTOVECTOR(E,EG)
2: n← |EG|
3: Q[k], Q[i]← 0, 0 ≤ i < n
4: for ej ∈ E do
5: for eg ∈ EG | 0 ≤ g < n do
6: if ej = eg then
7: Q[g]← Q[g] + 1
8: end if
9: end for

10: end for
11: return Q
12: end procedure

S.N B E S C F G H F G

D.N A B B B E S C G H

Label aOBO wAW wAW wAW wGB wGB wGB wDB wDB

1 1 0 0 1 0 0 0 0 1 1 1 1 1 11 1 1 1 1 1 1 1 1 0 0 0 0 0 0

S.N B E R L F I J F I

D.N A B B B E R L I J

Label aOBO wAW wAW wAW wGB wGB wGB wDB wDB

S.N B E S C F G H F G R L I J F I

D.N A B B B E S C G H B B R L I J

Label aOBO wAW wAW wAW wGB wGB wGB wDB wDB wAW wAW wGB wGB wDB wDB

Global Edge Set

u"u#

Edge SetEdge Set

p% p&
A

E L

F J

R

B

I

w
G
B

a
O
B
O

w
G
B

w
A
W

w
G
B

wDB wDB

A

E C

F H

S

B

G
w
G
B

a
O
B
O

w
G
B

w
A
W

w
G
B

wDB wDB

Fig. 2: Provenance graph conversion to vector space. ux, uy vectors generated from both provenance graphs.

Algorithm 2: Detection algorithm given an observation phase
graph set, P , a detection phase graph, p, and a threshold.

1: procedure GRAPHANOMALY(P, p, threshold)
2: INPUT: P = {p0, ..., pn} | pi ← (Vi, Ei), 0 ≤ i ≤ n.
3: EG ← ∪ni=0Ei

4: Q← GraphtoV ector(p,EG)
5: Z ← {}
6: for pi ∈ P do
7: Ni ← GraphtoV ector(pi, EG)
8: z ← Cosine Similarity(Q,Ni)
9: Z ← Z ∪ zi

10: end for
11: sval ← min(Z)
12: if sval ≥ threshold then
13: return normal
14: end if
15: return anomaly
16: end procedure

Many IoT devices implement a control systems in which
sensor data is used as an input in a feedback loop to an
actuator. The operations of most control systems are regular
and predictable. For example, in a thermostat application, tem-
perature readings generated might be converted from Celsius
to Fahrenheit and utilized as feedback to an actuator. Each
iteration of a control loop sequence generates a path in a
provenance graph. This notion can be leveraged to define an
expected provenance graph for each application.

The expected regularity of provenance graphs in IoT appli-
cations motivates a supervised learning approach to anomaly

detection. This approach consists of two phases: observation
phase, also known as the training phase, and the detection
or test phase. In the observation phase, the system collects
provenance data considered to be a representation of the
normal system behavior. In the detection phase, the provenance
graph set is compared with the provenance graph derived from
subsequent observations to determine if an anomaly exists by
measuring similarity between this graph and the provenance
graph set. Note that provenance graphs from the observation
and detection phase form a graph set. A global edge set, EG

represents the union of edge sets contained in a graph set.
Algorithm 2 is the graph anomaly detection function given an
observation phase graph set, P , and a detection phase graph, p.
Z represents a list of the cosine scores from comparing each of
the provenance graphs in the observation phase graph set with
a detection phase graph. A function, calculateAnomalyScore
is used to determine the anomaly score, which is based on the
minimum cosine similarity score of elements contained in Z.

III. EXPERIMENT

The experiment evaluation serves as a preliminary study to
confirm the correctness of our theoretical approach in detecting
anomalous instances between provenance graphs. We evaluate
our intrusion detection algorithm by implementing an IoT
application which simulates a climate control system. Climate
control systems ensure a proper functional environment for
people and machinery. Constant irregularities in temperature
could have devastating effects on industrial machinery. This
system consists primarily of a heating ventilation and air
conditioning (HVAC) system which uses temperature and
humidity data to regulate environmental conditions within a
building. We utilize a publicly available dataset [9] which

0 10 20 30 40 50
Weeks

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

C
o
si

n
e
 S

im
ila

ri
ty

Fig. 3: Provenance graph comparison of climate control system
by week.

consists of a year’s worth of longitudinal data on the thermal
conditions, related behaviors, and comfort of twenty-four
occupants in a medium-sized building generated at a period of
fifteen minutes. We utilize the temperature and humidity data
as input to our simulation. We generate provenance graphs
for each week of the year. We compare the provenance graph
generated in consecutive weeks to see how they differ using
our graph similarity approach (i.e., week 1 compared to week
2, week 2 compared to week 3 etc.).

Figure 3 depicts the cosine similarity between provenance
graphs generated from the first occupant by preceding weeks.
Ensuring a proper threshold score is used for detection is
an important task that requires extensive knowledge of the
application domain. The threshold is manually set to a value
which is defined by domain experts. For automatic anomaly
threshold detection, one can use prediction methods to define
an anomaly score. As an example, a threshold might be set
to 0.15 in which all of the scores below the threshold are
considered anomalous. Since the dataset does not contain
attacks, the declines shown in Figure 3 would likely cause
false positives.

IV. RELATED WORK

Liao et al [10] characterize a system’s normal behavior by
the frequency of unique system calls which are converted into
a vector space representation. Stephanie et al. [11] define a
human immune system inspired intrusion detection analyzing
system call sequences. Yoon et al. [12] developed intrusion
detection on embedded systems by analyzing system call
frequencies clustered using k-means. Manzoor et al. [13]
proposed a centroid based clustering anomaly detection for
instances of streaming heterogeneous graphs in real time.
Papadimitriou et al [14] proposed five similarity algorithms
for comparing the similarity of web graphs. Xie et al. [15]
proposed a provenance-aware intrusion detection and analysis
(PIDAS) system using provenance graphs generated from
system calls which reveals interactions between files and pro-
cesses. Our approach differs from prior work because we focus

on anomaly detection through information flow sequences of
sensor data as represented by provenance graphs.

V. SUMMARY AND CONCLUSION

In this paper, we propose an anomaly detection algorithm
for detecting anomalous instances of sensor based events in an
IoT device using provenance graphs. We evaluate our approach
with a preliminary study on an IoT application which simulates
a climate control system. Current implementation of our
anomaly detection algorithm works with offline data. Future
work would include implementation for real-time detection.
We also plan on conducting further experimentation to identify
the false and true positive rates of our algorithm using select
IoT application dataset.

REFERENCES

[1] A. Greenberg, “The jeep hackers are back to prove car hacking can get
much worse,” 2015. [Online]. Available: https://www.wired.com/2016/
08/jeep-hackers-return-high-speed-steering-acceleration-hacks/

[2] D. Raywood, “Defcon: Thermostat control hacked to host ransomware,”
2016. [Online]. Available: https://www.infosecurity-magazine.com/
news/defcon-thermostat-control-hacked/

[3] A. Lazarevic, V. Kumar, and J. Srivastava, Intrusion Detection: A Survey.
Boston, MA: Springer US, 2005, pp. 19–78.

[4] E. Bertino, Data Trustworthiness—Approaches and Research Chal-
lenges. Cham: Springer International Publishing, 2015, pp. 17–25.

[5] T. Pasquier, X. Han, M. Goldstein, T. Moyer, D. Eyers, M. Seltzer, and
J. Bacon, “Practical whole-system provenance capture,” in Symposium
on Cloud Computing (SoCC’17), ACM. ACM, 2017.

[6] R. H. Zakon, Ed., 28th Annual Computer Security Applications Confer-
ence, ACSAC 2012, Orlando, FL, USA, 3-7 December 2012. ACM,
2012.

[7] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer,
“Provenance-aware storage systems,” in Proceedings of the Annual
Conference on USENIX ’06 Annual Technical Conference, ser. ATEC
’06. Berkeley, CA, USA: USENIX Association, 2006, pp. 4–4.

[8] E. Nwafor, D. Hill, A. Campbell, and G. Bloom, “Towards a provenance
aware framework for internet of things devices,” in Proceedings of the
14th International Conference on Ubiquitous Intelligence and Comput-
ing, ser. UIC ’17. San Fransisco, CA, USA: IEEE Computer Society,
2017.

[9] J. Langevin, P. L. Gurian, and J. Wen, “Tracking the human-building
interaction: A longitudinal field study of occupant behavior in air-
conditioned offices,” Journal of Environmental Psychology, vol. 42, no.
Supplement C, pp. 94 – 115, 2015.

[10] Y. Liao and V. R. Vemuri, “Using Text Categorization Techniques
for Intrusion Detection,” in Proceedings of the 11th USENIX Security
Symposium. Berkeley, CA, USA: USENIX Association, 2002, pp. 51–
59.

[11] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using
sequences of system calls,” J. Comput. Secur., vol. 6, no. 3, pp. 151–180,
Aug. 1998.

[12] M.-K. Yoon, S. Mohan, J. Choi, M. Christodorescu, and L. Sha,
“Learning execution contexts from system call distribution for anomaly
detection in smart embedded system,” in Proceedings of the Second
International Conference on Internet-of-Things Design and Implemen-
tation, ser. IoTDI ’17. New York, NY, USA: ACM, 2017, pp. 191–196.

[13] E. Manzoor, S. M. Milajerdi, and L. Akoglu, “Fast Memory-efficient
Anomaly Detection in Streaming Heterogeneous Graphs,” in Proceed-
ings of the 22Nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’16. New York, NY, USA: ACM,
2016, pp. 1035–1044.

[14] P. Papadimitriou, A. Dasdan, and H. Garcia-Molina, “Web graph similar-
ity for anomaly detection,” Journal of Internet Services and Applications,
vol. 1, no. 1, pp. 19–30, May 2010.

[15] Y. Xie, D. Feng, Z. Tan, and J. Zhou, “Unifying intrusion detection
and forensic analysis via provenance awareness,” Future Gener. Comput.
Syst., vol. 61, no. C, pp. 26–36, Aug. 2016.

SIOTOME: An Edge-ISP Collaborative Architecture
for IoT Security

Hamed Haddadi∗, Vassilis Christophides†, Renata Teixeira†, Kenjiro Cho‡, Shigeya Suzuki§, Adrian Perrig¶
∗Imperial College London

†Inria Paris
‡IIJ Research Lab
§Keio University
¶ETH Zurich

Abstract—Modern households are deploying Internet of
Things (IoT) devices at a fast pace. The heterogeneity of these
devices, which range from low-end sensors to smart TVs, make
securing home IoT particularly challenging. To make matters
worse, many consumer-IoT devices are hard or impossible to
secure because device manufacturers fail to adopt security best
practices (e.g., regular software patches). In this paper we propose
a novel, cooperative system between the home gateway and the
Internet Service Provider (ISP) to provide data driven security
solutions for detecting and isolating IoT security attacks. Our
approach is based on a combination of a large-scale view from
the ISP (using powerful machine learning techniques on traffic
traces), and the fine-grained view of the per-device activity from
the home (using edge processing techniques) to provide efficient,
yet privacy-aware IoT security services.

I. INTRODUCTION

Today we are observing an increasing rate in the intro-
duction of connected, Internet of Things (IoT) [9] devices in
our everyday life.1 Homes and public buildings and spaces
(e.g., campuses, pedestrian zones, airports) are increasingly
instrumented with a variety of IoT devices that can interact
with each other and/or be remotely monitored and controlled.
These devices range from voice-enabled personal assistants,
entertainment systems, health and well-being monitoring de-
vices (i.e., quantified self), home automation (i.e., smart plugs
and pet doors) and connected appliances, as well as monitoring
equipment such as light, temperature, and humidity sensors,
cameras, and motion detectors. As IoT devices are typically
embedded inside the networks (i.e., continuously interacting
using primary local and third party cloud-based services), they
are attractive attack targets for breaking into a secure network
infrastructure [6], [20], or for leaking sensitive information
about users and their behaviors [2], [11], [10], [19].

1https://www.forbes.com/sites/louiscolumbus/2017/01/29/
internet-of-things-market-to-reach-267b-by-2020/

The rapid development of the consumer IoT sector and
the focus on time-to-market has been generally at the sacrifice
of privacy and security. Many of the current devices remain
vulnerable to attacks, do not receive regular updates without
user intervention, or use insecure communication methods
such as telnet2 or HTTP-based communication. Often, device
vendors and manufacturers may be unable or unwilling to
release software updates that address vulnerabilities.3 A study
identified more than 500,000 insecure, publicly accessible
embedded networked devices [18]. Vulnerable IoT devices
make home networks open to attacks or privacy leaks and make
the Internet subject to large-scale Distributed Denial of Service
(DDoS) attacks such as the Dyn Attack by the Mirai botnet.45

Providing security for the consumer IoT market will be a big
challenge in the next decade.6

Traditional network security solutions combining static
perimeter network defenses (e.g., firewalls and intrusion de-
tection/prevention systems), with ubiquitous use of end-host
based defenses (e.g., antivirus), and software patches from ven-
dors (e.g., Patch Tuesday) [20] are challenged by the dynamic
landscape of the IoT threats and the technical skills required by
the end-users for maintaining secure IoT devices. An operation
deep inside the network renders traditional perimeter defenses
ineffective while the longevity of IoT devices implies that
despite IT security best practices, several vulnerabilities (e.g.,
default passwords, unpatched bugs) will remain deployed long
after vendors cease to produce or support them. Moreover,
devices can be moved between private, communal, or public
spaces. Given overlapping wireless connectivity within or
across spaces, it became easier for a device on one network
to inadvertently or maliciously breach the security and mis-
manage another device on another overlapping network [1].
The existing rule-based security measures cannot cope with
unpredictability in ever-changing traffic behaviors, as IoT
interactions are evolving with increasing complexity. Last but
not least, end-users in the consumer IoT space often lack
access to a technically skilled network administrator [8]. As
the number of devices increase (even within a household), the
traditional firewall and port-based monitoring approaches will

2https://arstechnica.com/information-technology/2017/08/
leak-of-1700-valid-passwords-could-make-the-iot-mess-much-worse/

3http://krebsonsecurity.com/2016/02/iot-reality-smart-devices-dumb-defaults/
4https://www.schneier.com/blog/archives/2016/11/lessons from th 5.html
5https://www.incapsula.com/blog/malware-analysis-mirai-ddos-botnet.html
6http://www.gartner.com/smarterwithgartner/

navigating-the-security-landscape-in-the-iot-era/

1st International Workshop on Security and Privacy for the Internet-of-Things
(IoTSec)
17 April 2018
http://dx.doi.org/XYZ

not be effective at mitigating the threats, while enabling the
range of services and applications in the IoT ecosystem to
operate flawlessly.

The complex inter-dependancies of the IoT ecosystem
force the network to (re)emerge as the key vantage point
for enforcing security policies [20]. Network-based security
solutions are better suited to the scale of deployed IoT devices,
the nature of Machine-to-Machine (M2M) communication, the
sheer diversity of the device hardware, as well as interoperabil-
ity constraints (e.g., devices of the same type but from different
vendors cannot always communicate) [19]. We thus propose
to move the responsibility of securing consumer IoT devices
from users to a collaborative system between the network edge
and the Internet Service Provider (ISP).

In this context, we propose a security system that learns and
adapts to the changing environment, and reacts to unexpected
events in a quick and autonomous manner, by means of collect-
ing data, performing analytics, creating network access rules,
and controlling traffic accordingly for defense. As dynamic
IoT threat detection requires a close view on traffic from the
users’ devices, we should employ security analytics methods
that guarantee privacy of raw users’ data. Furthermore, we
need to develop mechanisms that protect against a wide
range of network-based attacks such as vulnerability scanning,
intrusion attacks, network eavesdropping, data alteration, as
well as Denial-of-Service (DoS) attacks. Given that network
conditions and device behaviors can change rapidly, we need
to continuously reassess and update the IoT security posture.
Our overarching goal here is to create a protection system
that enables secure operation of an IoT deployment despite
potentially vulnerable or even compromised IoT devices.

In this paper we present SIOTOME,7 a cooperative ar-
chitecture between the edge network and the ISP for early
detection and mitigation of security vulnerabilities and threats
due to IoT device misconfigurations and malicious attacks. In
SIOTOME, instead of trying to secure an increasing number
of heterogeneous devices, we focus on securing the network
connecting them. With no communication, malicious devices
cannot compromise other devices or launch attacks. We pro-
pose to design, develop, and evaluate a system that relies
on the cooperation among defense mechanisms deployed at
multiple layers at the network edge: the cloud, the ISP, and
the home gateway. We advocate a data-driven approach to
detect and isolate security threats based on a combination
of large-scale view from the cloud (using machine learning
techniques on traffic traces) and the fine-grained view of the
per-device activity from within the home. To mitigate security
breaches, SIOTOME relies on a set of defense mechanisms,
for example, network isolation for limiting the attack surface,
key management approaches to establish cryptographic keys
between devices to provide communication secrecy and au-
thenticity, and allowed network input and output to prevent
vulnerability scanning and DDoS.

We assume that home users are independent and au-
tonomous for protecting user’s privacy. Thus, the ISP does not
know the details of devices deployed in the home. An obvious
case that requires cooperation between the edge and the ISP

7The word “siotome” is taken from a Japanese medieval word, a water pool
for protecting city canals from tidal influences.

is when identifying an infected device in the home. When
the ISP detects a suspicious communication originated from a
certain home, the ISP can only tell the home gateway about the
threat information and its signature for detection. Then, it is
the home gateway that identifies the device using the provided
signature, and notifies the user along with augmented device
information such as model and installation date extracted from
the home-internal device registry.

II. SYSTEM FRAMEWORK

Building up on existing network-based intrusion detection
and security systems, which focus on defending a single do-
main/service with rule-based approaches, SIOTOME leverages
data from a large number of domains to learn from the
environment to identify attack signals so that it can react
more quickly and effectively to emerging threats. A domain
in SIOTOME can be an individual home network, a cloud
provider, or an individual ISP network (the traditional defi-
nition of Autonomous System in Internet routing). As shown
in Fig. 1, SIOTOME has two high-level types of domains:
SIOTOME/edge and SIOTOME/cloud.

Inside the user’s home, we find the following components:

• The home gateway provides network connectivity to
the access ISP and enforces local connectivity under
the control of the home controller.

• The edge data collector is responsible to observe
network traffic to monitor the behavior of IoT devices.
It can also run active probing tests to profile devices.
This home collector can be hosted in the home gate-
way or in a separate device that is directly connected
to the gateway.

• The edge analyzer takes information from the home
data collector to profile the behavior of local IoT
devices and identify threats and attacks. Upon the de-
tection of a threat, it will notify the home controller. It
also shares relevant information with SIOTOME/cloud
after applying privacy-preserving data modifications.

• The edge controller is responsible for configuring
the home gateway to steer local network traffic:
among devices in the home as well as with the
outside world. The edge controller contains an SDN
controller for fine-gained control of network traffic
from/to connected devices in the home, as well as
additional management functions. Examples of man-
agement functions include simple mechanisms to cre-
ate small groups of devices (similar to Virtual LANs
but more convenient for IoT devices and easier to
handle for users), and also all classical control and
management functions in the home, e.g., DHCP, fire-
wall, user management. It is responsible for applying
specific countermeasures to protect users’ security and
privacy. The home controller functionality can also be
offloaded to SIOTOME/cloud when needed as equip-
ment in user’s homes may have limited resources.

SIOTOME/cloud hosts the following components of the
system:

2

ISP cloud

SIOTOME/cloudSIOTOME/edge

home gatewayIoT devices

Internet

access ISP

access ISP

data collector

analytics

controller

cross-domain
control

SIOTOME system blocks

knowledge exchange

customer data

edge/cloud coop

Fig. 1. SIOTOME Architecture and System Components

• The Cloud collector is the software system that col-
lects reports from home collectors as well as per-
forms additional monitoring at the ISP level (when
SIOTOME/cloud is running in the ISP), so it can ob-
serve malicious patterns that span several customers.

• The Cloud analyzer is similar to the edge analyzer in
that it analyses network traffic to identify threats. The
methods running in the cloud analyzer benefit from the
large volume of data coming from multiple homes and
ISP traffic. It is responsible for collecting the device
profiles learned across homes into a central database
as well as for populating this database with signatures
of attacks it discovers or learns from edge analyzers.

• The Cloud controller is an SDN controller that can
steer local network traffic at the ISP level and trigger
countermeasures to the threats identified by the cloud
analyzer.

• The cross-domain controller steers traffic between
domains. It can make a destination reachable from
only a subset of sources or ensure that outgoing traffic
stays within a selected network region.

• The secure communication component maintains se-
cure communication between various SIOTOME com-
ponents.

SIOTOME allows for delegating parts of such security
functionality from the cloud to the edge, enabled by a com-
mon framework called SIOTOME/cloud and SIOTOME/edge.
It aims to balance local learning/defense and global learn-
ing/defense, and to quickly propagate detected threat infor-
mation among users. The SIOTOME/edge in a user’s home
adapts to individual user environments, and provides front-end
defense mechanisms close to IoT devices. It also preserves

user privacy by processing sensitive data locally without ex-
posing them to a third-party [5]. We rely on the home gateway
architectures such as the Databox system [14], where privacy-
preserving IoT and sensor data analytics can be performed
using containerized libraries and isolated data sources, while
minimizing the risk of sensitive inferences from third parties
and the ISP [13], [12]. Collaborative and hybrid machine
learning frameworks have recently been developed, leveraging
edge processing to aid in preserving privacy, and increasing
the resource efficiency of IoT systems [7], [16].

The SIOTOME/cloud in the access ISP has a more global
view by collecting and analyzing data from a large number
of customers, as well as exchanging knowledge information
with SIOTOME/clouds in other ISPs. It also provides back-
end defense mechanisms for isolating individual customers and
for cross-domain communications. The SIOTOME/cloud and
SIOTOME/edge can run the same set of security primitives,
although the edge has only limited resources. A specific secu-
rity service is composed by chaining security primitives; each
security primitive can be dynamically created, deleted, or mi-
grated between the SIOTOME/cloud and the SIOTOME/edge.

Finally, SIOTOME makes extensive use of network slicing
for isolating IoT device communications; devices are grouped
by attributes and observed behaviors, and then, assigned to
a network slice with a specific security policy. SIOTOME
will rely on intra- and cross-domain network environments
that only permit approved network communications, which
we call permissioned network input and output. Intra-domain
mechanisms will rely on a technique called SDN-based
home network steering that whitelists communication between
groups of devices and devices and external entities (i.e., web-
sites) in network-isolated slices, leveraging the Majord’Home
platform [3], [4]. For cross-domain mechanisms, we plan
to leverage the SCION secure Internet architecture [17], an

3

inter-domain architecture that provides source-controlled path
selection, multipath operation, and DoS defenses. For intra-
domain, cross-domain and edge-to-cloud coordination, secure
communucation mechanism is essential. SIOTOME plan to
make use of blockchain as a secure broadcast channel based
on [15].

III. FUTURE DIRECTION

In this paper we proposed SIOTOME, an architecture for
a collaborative, privacy-preserving analytics architecture be-
tween the edge of the network and an ISP, to provide a first step
security defense against distributed attacks by compromised
IoT devices. As the first step towards realizing this vision,
we are evaluating the interactive behavior of a number of IoT
devices to advance our understanding of IoT security threats
in the wild. Understanding these interactions and network
utilization profiles allows us to train machine learning models
and establish optimal operational configurations between the
edge and the cloud.

SIOTOME is inspired by the vision to make IoT security
analysis, threat detection, and defenses intuitive and effective
for the non-expert users at the home environment. Our ambi-
tion is to build a service where data and inferences from the
edge are combined with the insights gained from the cloud to
provide a coherent system for early detection of security threats
and take autonomous action, and consequently alert the user
and the ISP. Most importantly, privacy-preserving inferences
of the normal device behavior and network characteristics, and
cooperative sharing of this knowledge in combination with
the ISP traffic characterization, allows SIOTOME to monitor
an IoT network, providing user security and privacy, despite
potentially vulnerable or compromised devices.

ACKNOWLEDGMENT

The authors would like to thank Felipe Huici, Matthieu
Boussard, Nicolas Le Sauze, Ludovic Noirie, Romain
Fontugne, Kensuke Fukuda, Ping Du, Aki Nakao, and Nick
Feamster for their extensive discussions on SIOTOME. We
also appreciate constructive feedback from the anonymous
reviewers at IoTSec 2018. Hamed Haddadi was supported
by the EPSRC Databox grant (Ref: EP/N028260/1) and a
Microsoft Azure for Research grant.

REFERENCES

[1] W. Aman, “Assessing the feasibility of adaptive security models for the
internet of things,” in Human Aspects of Information Security, Privacy,
and Trust, T. Tryfonas, Ed. Cham: Springer International Publishing,
2016, pp. 201–211.

[2] N. Apthorpe, D. Reisman, S. Sundaresan, A. Narayanan, and
N. Feamster, “Spying on the smart home: Privacy attacks and defenses
on encrypted iot traffic,” CoRR, vol. abs/1708.05044, 2017. [Online].
Available: http://arxiv.org/abs/1708.05044

[3] S. Bera, S. Misra, and A. V. Vasilakos, “Software-defined networking
for internet of things: A survey,” IEEE Internet of Things Journal, vol. 4,
no. 6, pp. 1994–2008, Dec 2017.

[4] D. T. Bui, R. Douville, and M. Boussard, “Supporting multicast and
broadcast traffic for groups of connected devices,” in 2016 IEEE NetSoft
Conference and Workshops (NetSoft), June 2016, pp. 48–52.

[5] A. Chaudhry, J. Crowcroft, H. Howard, A. Madhavapeddy, R. Mortier,
H. Haddadi, and D. McAuley, “Personal data: Thinking inside the
box,” in Proceedings of The Fifth Decennial Aarhus Conference on
Critical Alternatives, ser. AA ’15. Aarhus University Press, 2015, pp.
29–32. [Online]. Available: http://dx.doi.org/10.7146/aahcc.v1i1.21312

[6] E. Fernandes, A. Rahmati, K. Eykholt, and A. Prakash, “Internet of
things security research: A rehash of old ideas or new intellectual
challenges?” IEEE Security Privacy, vol. 15, no. 4, pp. 79–84, 2017.

[7] L. Georgopoulos and M. Hasler, “Distributed machine learning
in networks by consensus,” Neurocomputing, vol. 124, pp. 2 –
12, 2014. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0925231213003639

[8] R. E. Grinter, W. K. Edwards, M. Chetty, E. S. Poole, J.-Y. Sung,
J. Yang, A. Crabtree, P. Tolmie, T. Rodden, C. Greenhalgh, and
S. Benford, “The ins and outs of home networking: The case for
useful and usable domestic networking,” ACM Trans. Comput.-Hum.
Interact., vol. 16, no. 2, pp. 8:1–8:28, Jun. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1534903.1534905

[9] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(iot): A vision, architectural elements, and future directions,” Future
generation computer systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[10] M. Krämer, D. Aspinall, and M. Wolters, “Poster: Weighing in ehealth
security,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’16. New
York, NY, USA: ACM, 2016, pp. 1832–1834. [Online]. Available:
http://doi.acm.org/10.1145/2976749.2989044

[11] D. Leibenger, F. Möllers, A. Petrlic, R. Petrlic, and C. Sorge, “Privacy
challenges in the quantified self movement - an EU perspective,”
PoPETs, vol. 2016, no. 4, pp. 315–334, 2016. [Online]. Available:
https://doi.org/10.1515/popets-2016-0042

[12] M. Malekzadeh, R. G. Clegg, A. Cavallaro, and H. Haddadi, “Protecting
sensory data against sensitive inferences,” the 1st EuroSys Workshop on
Privacy by Design in Distributed Systems, 2018.

[13] M. Malekzadeh, R. G. Clegg, and H. Haddadi, “Replacement autoen-
coder: A privacy-preserving algorithm for sensory data analysis,” The
3rd ACM/IEEE International Conference on Internet-of-Things Design
and Implementation, 2018.

[14] R. Mortier, J. Zhao, J. Crowcroft, L. Wang, Q. Li, H. Haddadi,
Y. Amar, A. Crabtree, J. Colley, T. Lodge, T. Brown, D. McAuley,
and C. Greenhalgh, “Personal data management with the databox:
What’s inside the box?” in Proceedings of the 2016 ACM
Workshop on Cloud-Assisted Networking, ser. CAN ’16. New
York, NY, USA: ACM, 2016, pp. 49–54. [Online]. Available:
http://doi.acm.org/10.1145/3010079.3010082

[15] J. Murai and S. Suzuki, “Blockchain as an audit-able communication
channel,” in Computer Software and Applications Conference (COMP-
SAC), 2017 IEEE 41st Annual, July 2017, pp. 516–522.

[16] S. A. Osia, A. S. Shamsabadi, A. Taheri, H. R. Rabiee, N. Lane, and
H. Haddadi, “A hybrid deep learning architecture for privacy-preserving
mobile analytics,” arXiv preprint arXiv:1703.02952, 2017.

[17] A. Perrig, P. Szalachowski, R. M. Reischuk, and L. Chuat, The SCION
Architecture. Cham: Springer International Publishing, 2017, pp. 17–
42. [Online]. Available: https://doi.org/10.1007/978-3-319-67080-5 2

[18] A. Sivanathan, D. Sherratt, H. H. Gharakheili, V. Sivaraman, and
A. Vishwanath, “Low-cost flow-based security solutions for smart-
home iot devices,” in 2016 IEEE International Conference on Advanced
Networks and Telecommunications Systems (ANTS), Nov 2016, pp. 1–6.

[19] V. Sivaraman, H. H. Gharakheili, A. Vishwanath, R. Boreli, and
O. Mehani, “Network-level security and privacy control for smart-home
iot devices,” in WiMob. IEEE Computer Society, 2015, pp. 163–167.

[20] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu, “Handling a
trillion (unfixable) flaws on a billion devices: Rethinking network
security for the internet-of-things,” in Proceedings of the 14th ACM
Workshop on Hot Topics in Networks, ser. HotNets-XIV. New
York, NY, USA: ACM, 2015, pp. 5:1–5:7. [Online]. Available:
http://doi.acm.org/10.1145/2834050.2834095

4

Butterfly Effect: Causality from Chaos in the IoT

Ioannis Agadakos∗, Gabriela Ciocarlie†, Bogdan Copos‡, Tancrède Lepoint†, Ulf Lindqvist‡, and Michael Locasto†
∗ Stevens Institute of Technology, Hoboken, New Jersey

iagadako@stevens.edu
† SRI International, New York, New York

{gabriela.ciocarlie,tancrede.lepoint,michael.locasto}@sri.com
‡ SRI International, Menlo Park, California
{bogdan.copos,ulf.lindqvist}@sri.com

Abstract—The interconnection of devices into networked ser-
vices and applications is collectively called the Internet of Things
(IoT). Significant efficiencies are gained from this ecosystem
that automates many aspects of everyday life. Unfortunately,
this automation often occludes the understanding of causes and
effects of actions taken in an IoT network (including those of
rogue devices). As we observe the effects of a particular device’s
actions on its environment (e.g., the light turns on), we want to
capture the full causality path to the originating device. This
paper describes a promising approach that enables one to infer
a potential sequence of actions (or any deviation thereof) that
led to a particular observation.

I. INTRODUCTION

The automation underlying the Internet of Things aims
to make many aspects of our lives easier or more efficient.
Smarter sensing, control, and actuation help decreasing the
need for physical presence or action of individuals even in their
own home. From a computational perspective, devices become
smarter by using distributed, yet external computing engines
commonly referred to as “the Cloud”. As a run-through ex-
ample in this paper, we consider a simple smart-home setting
containing personal assistants, connected lightbulbs, and smart
hubs—see Fig. 1.

Fig. 1. A simple smart home that includes two personal assistants (an Amazon
Echo and a Google Home), a connected lightbulb and its hub (Philips Hue),
itself connected to a smart home hub (Samsung SmartThings), and a router.
The Philips Hue application is also installed on a smartphone that uses a
cellular network. Different colors encode that each smart device has a different
Cloud end-point.

As lights turn on in this smart home, we want to understand
what sequence of actions led to the activation of the connected
lightbulb, and whether everything happened “as planned”. The
research question that we focus on in this paper therefore

becomes: Can we identify the cause or causes of an effect
observed in an IoT device? Were they anomalous? While the
IoT is often described as a network of interconnected devices,
the reality is quite different: most IoT devices are connected
directly (or through a hub) to the router, and interactions
between devices happen after network packets from Cloud
end-points are received. For example, when one asks Echo
to turn the lights on, the voice stream is encrypted and sent
to an Amazon end-point, and a few moments later, a network
packet emanates from a Philips end-point and goes to the hub;
the hub then sends a network packet to the lightbulb, which
eventually turns the lights on.

To answer the above question, this paper proposes a method-
ology of causal inference in an IoT setting. As an action
is observed on an IoT device, we propose to automatically
investigate the potential sequences of causes that led to this
particular action. The first step of the methodology identifies
every potential source of cyber and physical interactions with
the device. For every such source, the second step is to inspect
its recent behavior against pre-existing models of behaviors
associated to the final action. These two steps are iterated to
construct a tree, where leafs are potential causes. Using our
running example, as the lights turns on, we inspect the two
potential interaction paths with the lightbulb: the physical path
via a physical switch, or the cyber path via the hub.

turns on lightbulb
switch

hub

physical

cyber

The recent behavior of each input source (i.e., the switch
and the hub) is inspected and compared against models of
predefined behaviors. For example, it will be checked whether
recent network packets have been issued from the hub and
directed to the lightbulb. When no predefined behavior is
known or when the input source cannot be observed (e.g.,
the switch), a generic root cause “change” may be associated
to the input sources. By bootstrapping the previous approach
and considering multiple expected behaviors (from physical
sources such as side-channels or cyber sources such as network
traffic), it may be possible to identify the root cause (or causes)
that led to an effect, such as “a voice command to Amazon

Echo caused the lightbulb to turn on”.
There are several approaches to applying provenance anal-

ysis to the IoT domain. Previous efforts [1]–[3] instrument
IoT devices to generate provenance records. The approach
presented in this paper lies on the opposite end of the spectrum
and is designed to work in uncooperative IoT environments.
As such, our black-box approach relies on learning device
behavior by analyzing readily available information streams
such as network communications and side channel modalities.
By analyzing omnipresent evidence, our analysis can easily
support new behaviors while instrumentation needs to be reap-
plied with every firmware update. The lack of instrumentation
also implies that there is no overhead imposed on the IoT
devices and network. On the other hand, the completeness
of the learned behavior models depends heavily on extensive
exercising of the devices.

Significant challenges arise along the way, such as modeling
an IoT environment and its cyber and physical interactions
paths, or measuring and learning expected behaviors. To
model the IoT environment and its cyber-physical interactions,
we leverage an approach proposed by Agadakos et al. [4]
that builds a “pessimistic assumption” model, where device
interactions are defined by the (hardware) capabilities of the
devices and are not limited by the software stack driving
the devices and their interactions. We review this modeling
technique in Section II-A. As for expected behaviors, we
define an expected behavior as a vector of physical and
cyber measurements computed when an event is observed. In
particular, our expected behavior captures side-channels, such
as power consumption and electromagnetic emanations, and
network traffic fingerprints. We provide specific methods for
measuring such expected behaviors in Section II-B.

In the rest of this paper, we elaborate on our methodol-
ogy and report early experimentation results in the setting
described in Fig. 1 to motivate its viability in Section III. We
discuss limitations and future work in Section IV.

II. CAUSAL INFERENCE METHODOLOGY

Our causal inference is comprised of three stages, described
below: (i) mapping of the IoT environment to identify devices
and potential interactions, (ii) learning of expected behavior,
and (iii) detection of causality.

A. Mapping the IoT Environment

The first step towards identifying causal inference is iden-
tifying and characterizing the devices available in the IoT
environment. To achieve this, we rely on the approach de-
scribed in [4]. The approach leverages sniffers that passively
monitor network transmissions between devices across several
network technologies (e.g., Wi-Fi, Bluetooth, ZigBee). Once
the observed traffic is analyzed and devices are fingerprinted,
a “pessimistic assumption” model of the cyber and physical
channels between devices is generated. The model identifies
potential interaction paths between devices based on their
capabilities. The model is “pessimistic” in that the feasibility
of an interaction path is basely solely on devices’ capabilities

and not other properties (e.g., physical obstacles, software con-
straints). This assumption provides us the flexibility required
to reason about a variety of threat models including attackers
with various capabilities and worst-case scenarios.

The interaction model supports our causality analysis by
reducing the number of evidence sources to be analyzed.
Given the observed behavior of a device, the interaction
model indicates which devices should be considered for the
causality analysis and which can be safely ignored (since
it is improbable they impacted the current device). This is
particularly important for interactions over physical channels
which are difficult to trace to an origin.

B. Measuring Expected Behaviors

The model of cyber and physical interactions of the IoT
devices depicts the world of possible interaction paths between
devices according to their capabilities. However, the model is
a hypothetical representation and fails to capture information
about what interactions are actually occurring. To capture
live information regarding interactions, our approach leverages
network traffic communications and side-channel information.

We passively monitor network traffic and extract patterns
of network communications between devices across multi-
ple network technologies (e.g., Wi-Fi, Bluetooth, Zigbee).
Information regarding protocols, size, and format of packets
exchanged is recorded. However, network traffic only covers
a subset of interactions (i.e., cyber interactions over supported
technologies) and discloses limited information about the
impact of communications on device behavior. To account for
these limitations, our approach also relies on side channel anal-
ysis. Side channels such as electromagnetic emanations and
power consumption provide additional insight into device be-
havior, especially regarding interactions over physical channels
(that may be otherwise difficult to identify). Time-series side
channel modalities for each device are processed using signal
processing (both time and frequency domain features) along
with machine learning techniques to identify and differentiate
between patterns of behavior. This approach enables flexibility
in the side channels considered for each device. While some
side channels (e.g., power) require instrumentation, others
(e.g., acoustics, EM) do not, increasing the applicability of
the proposed approach.

Currently, our approach learns the expected behavior over
repeated observations. An alternative solution is to leverage
an active probing approach that stimulates the devices and
triggers various behavior. While this approach is more in-
volved, it achieves higher confidence and can better determine
relationships between input and device behavior.

Behavioral patterns from network traffic, side channel
modalities, and physical environment sensors are combined to
create representations of expected behaviors for each device.
Using these patterns, we construct a tree-based model of the
expected behaviors. The nodes of the tree represent events,
with leafs indicating potential causes. The edges of the model
connect events and depict temporal order of the events. In
the future, we wish to explore the use of Dynamic Bayesian

Network (DBN) [5] and Probabilistic Suffix Tree (PST) [6] as
the underlying predictive model, as seen in [7].

C. Detecting Causality

Given the model of the potential IoT interactions and the
learned expected behavior model, it is possible to trace the
causality of an event to the original cause by traversing the
tree model. The analysis begins at the root of the tree with
the device that triggered the event and its observed behavior.
Starting at the root, the approach performs two recursive steps:
(i) compare observed behavior with expected behavior and (ii)
identify potential sources of input and analyze. From there, the
IoT network model is used to determine which devices may
have impacted the triggered device. The observed behavior
for those devices is compared against the expected behavior.
This process is repeated until either there are no unvisited
neighboring nodes or a leaf node in the expected behavior
model was reached. The last node(s) traversed represents the
cause(s) that triggered the event. When no predefined behavior
is known, a generic root cause “change” is associated with the
input. If the input source behavior does not match a predefined
one, an alert is raised as the occurrence may be indicative of
malicious activity. A similar approach can be used to perform
forward-search and identify subsequent events associated with
a particular event.

III. EXPERIMENTATION AND EARLY RESULTS

A. Test Bed

We test our approach in an IoT network comprised of
an Amazon Echo, a Google Home, a Samsung SmartThings
Hub, a Philips Hue bridge and an Iris light, and an Android
smartphone device. The network and its topology are depicted
in Figure 1. All devices are installed according to their manual
instructions and run native software. To capture network traf-
fic, we install an open-source OpenWRT-based router firmware
on a commodity wireless router. We collect two types of
side channel modalities; power is collected using a low cost
off-the-shelf OORT BLE smartplug, while EM emanations
are measured using the HackRF software defined radio. This
simple IoT network example is sufficient to show that the chain
of events and the infrastructure at play are far from trivial.
B. Power Analyses

We perform several experiments while measuring power
consumption of the Amazon Echo and Google Home devices,
independently. As shown in Figure 2, devices exhibit different
patterns in their power consumption in response to various
voice commands.
C. Electromagnetic Emanations

In our experiments, we also explore the feasibility of relying
on electromagnetic emanations. Using the HackRF software-
defined radio, we measure the electromagnetic emanations
generated by the Philips Hue bridge. The raw signal is split
into windows. For each window, we compute the power
spectral density (PSD) to determine the frequency components
of the signal. These frequencies compose the features that help
us differentiate between behavior phases.

Fig. 2. Power Analysis for Amazon Echo (1st column) and Google Home (2nd
column) over three verbal commands. First row contains an example run with
all three tested commands in the same experiment, the commands are easily
deciphered from each power consumption signature. All commands given over
a text2speech timed script. Note that Google Home responds to commands
faster than Amazon Echo, hence we observe more commands/responses in
the same time interval.

D. Scenarios

We evaluate our approach using two scenarios.
a) Scenario 1: Determining causality source: The first

scenario demonstrates our approach’s ability to identify the
causality source of the Philis Hue Iris light turning on. In
this scenario, we send voice commands to the Google Home
and Amazon Echo devices to turn on the lights. Our approach
monitors the network communications and side channel in-
formation, and follows the chain of events starting from the
effect event, the Hue Iris light activation event, as depicted in
Figure 3a. Based on power consumption patterns of the Google
Home and Amazon Echo, our approach is able to correctly
identify which virtual personal assistant device received the
voice command that triggers the light activation.

b) Scenario 2: Identifying anomalous activity: The sec-
ond scenario, illustrated in Figure 3b, uses the same setup
to show how our approach can be leveraged for monitor-
ing and debugging purposes. This scenario demonstrates our
approach’s ability to not only identify where a chain of
events breaks down, but also what parts of the expected
interactions are missing. To simulate a broken link in a chain
of interactions, we place the Philips Hue bridge in a faraday
cage to isolate it from Zigbee radio communications. While
the Hue bridge is still connected to the Internet via a physical
wire, it is unable to communicate with the Hue Iris and turn
the light on. We repeat the “turn on lights” voice command
and use our approach to determine where the chain of events
terminates. Unlike in the previous scenario, our approach
performs forward-search to determine the sequence of effects
created by the voice command. By comparing the gathered
evidence against the learned model we successfully find that
the Zigbee “lights on” message to the Iris light is the missing
link.

source

1

2

3

4

(a) Scenario 1: Determining causality
source

X

1

2 3

(b) Scenario 2: Identifying anomalous
activity

Fig. 3. Our approach is capable of performing both forward and backward search to analyze a chain of events.

IV. LIMITATIONS AND FUTURE WORK

Limitations. The reliance on learning device behavior limits
our coverage to only previously-observed behaviors. Extensive
exercising of devices is crucial to achieving completeness. The
dynamic nature of devices and the high number of factors
that can dictate their behavior makes this nontrivial. Another
limitation of our approach is that it currently only supports
cause-effect relationships that are temporally adjacent and does
not handle events interrupted by delays.
Related Work. Several prior efforts [1]–[3] apply provenance
analysis to the IoT domain. While similar in scope, we do not
employ instrumentation-based provenance analysis. Previous
work on modeling systems and their behavior has been done
in many domains, including IoT. Researchers have proposed
models for IoT and Cyber-physical environments [4] to iden-
tify potential interaction paths. Other previous efforts [7]
propose threat detection frameworks that rely on models
of communication patterns in industrial control systems. In
contrast to these works, our work combines evidence from
disjoint information streams to construct a probabilistic model
of device behavior. Unlike previous efforts that apply side
channel analysis for anomaly detection [8], [9], our work
leverages side channels to characterize behavior.
Future Work. There are several ways to improve and extend
our approach in the future. We plan on extending the model
proposed by Agadakos et. al. [4] to capture more information
regarding potential interactions between devices, particularly
with respect to time. We wish to address temporal discon-
tinuity of events by keeping track of the device behavior
and associated states. Finally, we plan to explore the use of
mathematical correlation on edges to fascilitate selection of
most probable paths. One way of extending our approach is
to add support for handling “if this, then that” (IFTT) rules
(e.g., as in the Mozilla Web of Things Gateway) and leverage
our approach to verify the expected behavior.

V. CONCLUSION

The autonomy of the Internet of Things provides many ben-
efits. However, this automation also raises security concerns
and introduces new challenges. As the IoT network scales,
it becomes increasingly difficult to determine how and why
devices interact. In this paper, we propose an approach that
enables one to infer a potential sequence of actions that led

to a particular observation. The proposed aproach relies on a
model of IoT device interactions and collected data to learn
expected behavior and trace an event to the original cause.
We demonstrate our methodology in a small smart-home IoT
network and show that it is possible to identify the root cause
of various events such as a smart-light turning on. The many
benefits and applications of our approach include that it can
be applied as an anomaly detector for IoT device interactions,
and that it can be used for planning (e.g., configuring devices
to minimizes attack surface or providing certain isolation
properties) and debugging (e.g., indicating where the chain
of interactions failed).

ACKNOWLEDGMENT

This work was performed at SRI International’s Internet of
Things Security and Privacy Center.

REFERENCES

[1] Q. Wang, W. U. Hassan, A. Bates, and C. Gunter, “Fear and logging in
the Internet of things,” in Network and Distributed Systems Symposium,
2018.

[2] M. N. Aman, K. C. Chua, and B. Sikdar, “Secure data provenance for
the Internet of things,” in Proceedings of the 3rd ACM International
Workshop on IoT Privacy, Trust, and Security. ACM, 2017, pp. 11–
14.

[3] S. Bauer and D. Schreckling, “Data provenance in the Internet of things,”
in EU Project COMPOSE, Conference 2013, 2013.

[4] I. Agadakos, C.-Y. Chen, M. Campanelli, P. Anantharaman, M. Hasan,
B. Copos, T. Lepoint, M. Locasto, G. F. Ciocarlie, and U. Lindqvist,
“Jumping the air gap: Modeling cyber-physical attack paths in the
Internet-of-Things,” in Proceedings of the 2017 Workshop on Cyber-
Physical Systems Security and PrivaCy, ser. CPS ’17, 2017, pp. 37–48.

[5] Z. Ghahramani, “Learning dynamic Bayesian networks,” in Adaptive
processing of sequences and data structures. Springer, 1998, pp. 168–
197.

[6] D. Ron, Y. Singer, and N. Tishby, “Learning probabilistic automata with
variable memory length,” in Proceedings of the seventh annual conference
on Computational learning theory. ACM, 1994, pp. 35–46.

[7] M.-K. Yoon and G. Ciocarlie, “Communication pattern monitoring:
Improving the utility of anomaly detection for industrial control systems,”
in Proceedings of the 2014 NDSS Workshop on Security of Emerging
Networking Technologies (SENT), 2014.

[8] C. Aguayo Gonzalez and A. Hinton, “Detecting Malicious Software Exe-
cution in Programmable Logic Controllers Using Power Fingerprinting,”
in Critical Infrastructure Protection VIII. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014, pp. 15–27.

[9] A. Nazari, N. Sehatbakhsh, M. Alam, A. Zajic, and M. Prvulovic,
“EDDIE: EM-Based Detection of Deviations in Program Execution,” in
Proceedings of the 44th Annual International Symposium on Computer
Architecture, ser. ISCA ’17. New York, NY, USA: ACM, 2017, pp. 333–
346. [Online]. Available: http://doi.acm.org/10.1145/3079856.3080223

http://doi.acm.org/10.1145/3079856.3080223

Cognitive Enhancement as an Attack Surface
Daniel J. Sanchez

Computer Science Laboratory
SRI International

Menlo Park, CA, USA
daniel.sanchez@sri.com

Bogdan Copos
Computer Science Laboratory

SRI International
Menlo Park, CA, USA
bogdan.copos@sri.com

Abstract—Imagine that an attacker with an off-the-shelf Blue-
tooth exploit could go beyond gaining access to your connected
devices and directly manipulate the neurons in your brain. The
emergence of wearable Internet-of-Things devices has introduced
consumer-available neural stimulator devices that are capable of
modulating brain activity and function. The level of stimulation
varies from seemingly innocuous sound stimulation to electrical
current delivered to the scalp. We outline how these new
stimulation technologies are opening the door to a novel type
of attack surface. One use case shows how it is possible to
manipulate stimulation parameters with off-the-shelf Bluetooth
man-in-the-middle and replay attacks. Another scenario outlines
a risk analysis conducted during development of an auditory sleep
enhancement system. Lastly, we discuss safeguards and recom-
mendations to address the emerging threats related to the nascent
market of consumer wearables with actuation capabilities.

Index Terms—Internet-of-Things security, wearables, attack
surface, cognition, human stimulation, Bluetooth

INTRODUCTION

Security research of “neuro-devices” has focused on privacy
concerns related to devices that measure neural activity [1].
However, off-the-shelf wearables now feature stimulation ca-
pabilities. Consumer-available, connected, wearable devices
that are capable of neurostimulation naturally raise concerns
about their security and physical-safety risks. Recent high-
profile exploits of smart guns [2] and automated car wash
stations [3] have demonstrated the feasibility of physical harm
that can be accomplished when an attacker compromises a
connected system. Here we outline capabilities for abuse in
this emerging market of systems that are able to directly
stimulate a user’s brain, and provide guidance on practices
for safety guided by both computer science and neuroscience.

Cyber-security risks related to consumer neurostimulators
are fundamentally different from those of cyber-physical sys-
tems for a number of reasons. 1) Neurobiology: The difficulty
of accurately modeling the effects of neurostimulation makes it
challenging to validate ongoing system operation with closed-
loop feedback, 2) Scale: Consumer-available stimulators are
much cheaper and more widely accessible than their medical-
grade counterparts, 3) Oversight: Despite their actuation
capabilities, the FDA brands these devices as “health and
wellness” as opposed to a “medical device” [4], putting them
in the same category as fitness trackers and aroma therapy.
4) Misuse: There are no doctors monitoring dosage and
patient outcomes, so users must monitor their own progress

and performance. In this paper, we show how to manipulate
two different neurostimulation technologies to produce adverse
effects and provide recommendations for system creators.

Neurostimulation Overview

Systems that can modulate neural activity are no longer
reserved for research labs with huge budgets. Advancements
in technology and computing have made these tools cheap
enough to be embedded into consumer devices that can be
purchased online or at specialty stores. Brain sensing was
the first neurotechnology to gain consumer traction, with
companies such as NeuroSky, Emotiv, and Muse producing
electroencephalography (EEG) headbands for users to en-
hance their lives through “biofeedback,” which is the effortful
modulation of one’s own brain waves. However, humans are
intrigued with the idea of enhancing cognition and human
performance. A dedicated biohacker community has long pur-
sued brain-enhancing nootropics and techniques for ultimate
performance, and now digital technology has entered the space
of enhancement tools. Professional sports teams are exploring
these tools, and it has been reported that the Golden State
Warriors, NBA Champions in 2015 and 2017, have used
consumer neurostimulators to enhance their performance [5].
Additionally, sleep enhancement is a new segment of this
emerging market, with startups and large companies taking
part in developing devices that provide stimulation for mod-
ulating brain function. Consumer neurostimulators vary in
their approach, from mild electrical stimulation [6] to change
cortical excitability, to auditory cues that are precisely-timed
to modulate sleep or memory function [7]. A key realization,
from a security perspective, is that while this stimulation seems
fairly innocuous, these devices work with a high degree of
specificity such that changes in the parameter space can render
the system useless, or worse, a threat to the user’s wellbeing.
To provide a thorough picture of the space, we present an
exploitation scenario for a consumer electrical stimulation
system and a risk analysis for an auditory stimulation system.

TRANSCRANIAL DIRECT CURRENT STIMULATION

Transcranial Direct Current Stimulation (tDCS) has been, by
far, the most popular form of consumer-level “brain-hacking,”
with devices that are currently available for purchase [8].
tDCS works by applying a mild electrical current to the scalp
(usually between 1-2 mA), where anodal (positive) stimulation

excites neurons, making them more likely to fire, and catho-
dal stimulation (negative) depresses neuronal excitability [9],
[10]. Although tDCS is generally considered safe when used
according to evidence-based guidelines, the consequences of
higher stimulation intensities and durations are not yet well
understood [11].

Use Case: tDCS Bluetooth Exploit

The system we analyzed is marketed for enhancing skilled
motor performance in athletes. We selected it for our study
because the stimulation sites are easily accessible for mon-
itoring our test results. The system consists of three com-
ponents: the stimulation headset, a back-end server, and a
smartphone application (app). The headset is a set of over-
the-ear headphones with three tDCS stimulator pads built into
the band (see Fig. 1). The pads in the band are situated
over key motor cortex areas to stimulate neurons and enhance
performance. The app communicates to the server for updates
and information about the neurostimulation sessions. Session
profiles are downloaded from the cloud when the application
starts, outlining the stimulation protocol that dictates stimula-
tion intensity, electrical polarity, and session duration. Relative
stimulation intensity can then be controlled within the app
during a session. The session profiles (downloaded from the
server) and user commands are communicated to the headset
over Bluetooth Low-Energy (BTLE) 4.1. The app performs
read requests for headset status information to obtain battery
level, and, critically, the impedance value that determines
whether the headset has a connection with the user’s scalp.
If the impedance value or battery level are below a threshold,
the application does not allow a user to start a stimulating
session.

Threat Model and Attack Methodology

We focus on a particular threat around tDCS neurostim-
ulation. Specifically, we consider an attacker who wants to
harm the performance or well-being of a user by maliciously
taking control of the system. Considering these devices are
marketed for performance enhancement, we also discuss users
as a potential threat in the Discussion section.

Our man-in-the-middle (MitM) attack exploits the lack of
authentication in the Bluetooth communications between the
smartphone and the headset and demonstrates that such an
attack gives a malicious party full control. We use an open-
source BTLE MitM framework that is comprised of two
components: an interception core and a proxy. The proxy
spoofs the slave (headset) device, while the interception core
connects to the actual headset and enables an attacker to
capture and modify traffic between the smartphone and head-
set. The traffic was analyzed during repeated observations
to determine association between Bluetooth payloads and
headset actions. Once the payload format was determined,
our MitM exploit modified particular payload bytes while the
headset was monitored by an oscilloscope to assess impact.
Once a user pairs their mobile device to the inconspicuously
spoofed headset, we demonstrate that an attacker can trigger

Fig. 1. Hardware testbench for assessing the operations of a tDCS headset
using a custom sensor rig and oscilloscope.

neurostimulation sessions, spoof impedance values, and adjust
stimulation intensity and session duration. Our ability to spoof
impedance readings allows us to cause the device to stimulate
even when it is not being worn. We were also successful
in altering values relating to stimulation intensity to set the
amplitude beyond the limit defined by the app. Using an
oscilloscope, as shown in Figure 1, we determined it was
possible to increase the intensity to 140% of the maxmimum
level (i.e., increase to 3.2 mA vs. the app-defined level 10 at
2.0 mA).

AUDITORY STIMULATION

Poor sleep leads to a host of negative consequences [12]. To
this end, another form of neurostimulation that is becoming
popular is sleep and memory enhancement with the use of
precisely-timed sound stimulation. During sleep, the brain pro-
duces stereotyped activity that can be reliably measured with
EEG. Slow-wave oscillations (SOs) are patterns of activity,
around 1 Hz in frequency, that correspond to neurons cycling
between highly active and inactive states. These SOs have a
crucial role in the restorative qualities of sleep and memory
consolidation [13]. There are two strategies for cognitive
enhancement that are achieved by time-locking audio stimula-
tion to key oscillation phases. General sleep enhancement is
accomplished by presenting a short burst of pink noise (50ms)
to increase the amplitude and power of the SOs [14], [15].
Targeted memory enhancement employs a similar strategy, but
in this case auditory stimulation that was presented during
learning is presented again during the SOs to bias the neu-
ral activity for that information and memory representation,
preferentially strengthening that knowledge [16], [17].

Use Case: Auditory Cognitive and Sleep Enhancement

Rythm (Dreem) and Philips (SmartSleep) have consumer
devices that attempt to enhance slow-wave sleep by using au-
ditory stimulation driven by real-time monitoring of EEG sig-
nals. While these headsets target general sleep enhancement,
the platform and framework are the same for a system aimed at
targeted memory enhancement. Here we outline risk analyses

assessed during development of an at-home device capable
of delivering auditory stimulation for cognitive enhancement
during sleep. It is reasonable to argue that the attacks outlined
in the tDCS section are also applicable to auditory stimulation
devices, but our hands-on experience developing a targeted
memory enhancement system provides novel insight into the
security concerns and possible negative outcomes with these
technologies. The following sections outline negative conse-
quences we discovered during early stages of development
of an auditory neurostimulation system through studies with
in-lab interviews (N=3), overnight clinical sleep monitoring
(N=5), and surveys (N=24).

Cognitive Impairment through Sleep Disruption

Auditory-based sleep enhancement is exceptionally sensi-
tive to precisely-timed stimulation [18]. Stimulation is useless
if timing is slightly off, or worse, actually harmful to sleep
quality. The algorithms typically work in two phases: (1) deep
sleep identification, and then (2) slow-wave monitoring and
stimulation. The first phase is critical, as it is easy to falsely
identify SOs outside of deep sleep due to oscillating signals
during wake or other stages of sleep. Thus, an attacker (or
system developer) needs only to cause the system to deliver
the stimulation outside of the ideal sleep stage.

During system development, clinicians noticed that many
participants experienced “sleep arousals” triggered by auditory
stimulation outside of deep sleep by volumes low enough
to not cause awakenings, but loud enough to disturb sleep.
“Sleep arousals” are rapid transitions from deep to lighter
stages of sleep that are detrimental to sleep quality, but do
not necessarily cause individuals to wake up and become
aware their sleep is disturbed. Additionally, in a follow-up
study we purposefully stimulated during all stages of sleep. In
this study, 83% of users reported hearing noises during sleep
(i.e., awakenings). However, only 20% believed it negatively
impacted their sleep and 33% believed it actually helped their
sleep quality! This disconnection between sleep disruption
and user perception highlights how people are not accurately
aware of their sleep quality, indicating that sleep enhancement
exploits would likely go unnoticed [12].

Targeted Nightmare Enhancement

While users may not be consciously aware of the detriments
of poor sleep quality, some negative consequences clearly
reach a user’s consciousness. Targeted memory enhancement
is achieved by presenting auditory cues during deep sleep that
were present during an earlier learning event in order to bias
consolidation for that information. One natural application is
enhancing foreign language vocabulary learning [19], as it is
naturally auditory in nature, and it is a highly desired learning
activity. Despite academic successes with enhancing vocabu-
lary learning in a laboratory environment, the movement to
real-world applications introduces novel complications that
normally would not be detected in a research environment.
During initial testing with an at-home device that used foreign
vocabulary words, in-person interviews revealed that some

users woke up and/or had nightmares, fearing that “...someone
was in [their] bedroom” because of the mysterious voices. It is
interesting to note that these adverse events were experienced
outside of the lab environment and were only reported during
interviews and not expressed in self-report surveys. In a lab
environment, it is not surprising to hear random voices of other
participants or researchers, but in a home environment it is rea-
sonably alarming to hear unfamiliar voices. This demonstrates
the potential for enhancement systems to become detrimental
to a user’s health and warrants serious consideration of how
security and safety can be embedded based on principles from
neuroscience and computer science.

DISCUSSION

Security researchers have been concerned with wearables
because of privacy-related problems, but now wearables also
feature actuation capabilities that can physically interact with
users. To this end, our work shows that well-established and
device-agnostic exploits can directly influence brain function,
producing anything from a change in motor stimulation to
inducing nightmares. The trivial effort required to find and
utilize such exploits demonstrates the grave concern for IoT se-
curity. These vulnerabilities reveal a need for wearable device
security practices that are well-informed by both computer
science and neuroscience. It is important to follow security
design principles [20] and best practices, and here we outline
three principles that should be carefully considered.

Recommended Security Practices

Independent Protection Mechanisms: Many IoT and
wearable systems are distributed amongst disjoint subsys-
tems, increasing the attack surface. Following with the tDCS
example, while the stimuli intensity levels are well-defined
in the app, we show how their values can be successfully
modified by a MitM and used by the headset without any
additional validation. At the heart of this problem is the
lack of independent protection mechanisms and over-privilege.
We argue that it is crucial that safeguards are introduced to
protect the data (1) at rest and in transit, (2) in both hardware
and software, and (3) in all components of the system (e.g.,
app, hub, wearable). Given the actuating capabilities of such
devices and their potential impact on users’ well-being, we
believe safeguards should be introduced at the hardware level
as a fail-safe default that would protect users from potentially
unsafe levels of stimuli.

Feedback-loop Validation: A security mechanism guided
by neuroscience that could reduce exploitation likelihood is
a robust closed-loop mechanism that has a predictive model
of stimulation effects for continuous system validation. A
simplified framework for this closed-loop feedback is shown
in Figure 2. By having a predictive model of how the neural
signal should be affected during stimulation, the system is able
to incorporate this information into the stimulation protocol.
For example, predicted slow-wave architecture changes due to
auditory stimulation, such as wave amplitude and slope. In
this case, it is much more difficult for the attacker to perturb

Fig. 2. Diagram with closed-loop feedback signal for neurostimulation. On
the left is a highly simplified diagram of a tDCS stimulation loop with an
unknown level of closed-loop feedback. On the right is a simplified auditory
stimulation loop with closed-loop feedback based on how well the ongoing
EEG signal matches the predicted change given the stimulation.

the system and affect the user because the predictive model
would not match the feedback signal and stimulation would
stop. The authors note this mechanism is likely achievable
with tDCS systems, as noted on the left portion of Figure 2,
but determining a feasible closed-loop marker was outside the
scope of this research.

Anti-Abuse Safeguards: Lastly, wearable enhancement
devices also present a unique challenge from a security
standpoint in their potential for user abuse. Guided by the
history of abuse potential with performance-enhancing drugs
in sports [21], it is important to stress the need for security
that protects a user from self-inflicted harm by misuse of such
devices. While many of these devices implement safeguards
to restrict use, these safeguards are often trivially bypassed.
In the case of the tDCS system we assessed, creating new
accounts or stopping a session prematurely enables a user to
freely use the headset as often as desired. Thus, it is important
to embed safeguards at multiple levels (hardware, server-side,
algorithms) to ensure that misuse is mitigated.

Main Takehome

Given the potential for harm and lack of oversight with off-
the-shelf cognitive enhancement systems, we believe it is crit-
ical to introduce redundant, independent security mechanisms
informed by neuroscience, computer science, and human fac-
tors. While completely mediating these issues is challenging,
we believe that all system developers, from neuroscientists to
engineers and computer scientists, can work together to ensure
that safeguards are introduced into all system components
at multiple layers. Although we understand system designers
are rightfully focused on the benefits and positive impacts of
their systems, it is important to always be vigilant about the
potential risks that could arise with these IoT devices.

ACKNOWLEDGMENT

System testing was performed at SRI International’s
Internet-of-Things Security and Privacy Center.

REFERENCES

[1] Tamara Bonaci, Jeffrey Herron, Charlie Matlack, and Howard Jay
Chizeck. Securing the exocortex: A twenty-first century cybernetics
challenge. In Norbert Wiener in the 21st Century (21CW), 2014 IEEE
Conference, pages 1–8. IEEE, 2014.

[2] Plore. Popping a smart gun. https://media.defcon.org/DEF CON 25/
DEF CON 25 presentations/DEFCON-25-Plore-Popping-a-Smart-Gun-
UPDATED.pdf, July 2017.

[3] Billy Rios. When IoT attacks: Understanding the safety risks
associated with connected devices. https://www.blackhat.com/docs/
us-17/wednesday/us-17-Rios-When-IoT-Attacks-Understanding-The-
Safety-Risks-Associated-With-Connected-Devices.pdf, July 2017.

[4] Halo Neuroscience. Is Halo Sport FDA approved?
https://support.haloneuro.com/hc/en-us/articles/115010397027-Is-
Halo-Sport-FDA-approved/, 2017.

[5] Alex Hutchinson. For the golden state warriors, brain zapping could pro-
vide an edge. http://www.newyorker.com/tech/elements/for-the-golden-
state-warriors-brain-zapping-could-provide-an-edge, 2016.

[6] Michael A Nitsche and Walter Paulus. Excitability changes induced in
the human motor cortex by weak transcranial direct current stimulation.
The Journal of Physiology, 527(3):633–639, 2000.

[7] Delphine Oudiette and Ken A Paller. Upgrading the sleeping brain with
targeted memory reactivation. Trends in Cognitive Sciences, 17(3):142–
149, 2013.

[8] Jennifer Alsever. Can electric ’brain training’ devices make you
smarter? http://fortune.com/2015/11/17/electric-brain-training-devices-
cognitive-enhancement/, 2015.

[9] Giuliana Grimaldi, Georgios P Argyropoulos, Amy Bastian, Mar Cortes,
Nicholas J Davis, Dylan J Edwards, Roberta Ferrucci, Felipe Fregni,
Joseph M Galea, Masahi Hamada, et al. Cerebellar transcranial direct
current stimulation (ctdcs) a novel approach to understanding cerebellar
function in health and disease. The Neuroscientist, 22(1):83–97, 2016.

[10] Gowri Jayaram, Byron Tang, Rani Pallegadda, Erin VL Vasudevan,
Pablo Celnik, and Amy Bastian. Modulating locomotor adaptation with
cerebellar stimulation. Journal of Neurophysiology, 107(11):2950–2957,
2012.

[11] Csaba Poreisz, Klára Boros, Andrea Antal, and Walter Paulus. Safety
aspects of transcranial direct current stimulation concerning healthy
subjects and patients. Brain Research Bulletin, 72(4):208–214, 2007.

[12] Hans Van Dongen, Greg Maislin, Janet M Mullington, and David F
Dinges. The cumulative cost of additional wakefulness: dose-response
effects on neurobehavioral functions and sleep physiology from chronic
sleep restriction and total sleep deprivation. Sleep, 26(2):117–126, 2003.

[13] Giulio Tononi and Chiara Cirelli. Sleep and the price of plasticity:
From synaptic and cellular homeostasis to memory consolidation and
integration. Neuron, 81(1):12–34, 01 2014.

[14] HV Ngo, Thomas Martinetz, Jan Born, and Matthias Mölle. Auditory
closed-loop stimulation of the sleep slow oscillation enhances memory.
Neuron, 78(3):545–553, 2013.

[15] Ju Lynn Ong, June C. Lo, Nicholas I. Y. N. Chee, Giovanni Santostasi,
Ken A. Paller, Phyllis C. Zee, and Michael W. L. Chee. Effects of phase-
locked acoustic stimulation during a nap on eeg spectra and declarative
memory consolidation. Sleep Medicine, 20:88–97, 2016.

[16] Daniel Bendor and Matthew A Wilson. Biasing the content of hippocam-
pal replay during sleep. Nature Neuroscience, 15(10):1439, 2012.

[17] John D Rudoy, Joel L Voss, Carmen E Westerberg, and Ken A Paller.
Strengthening individual memories by reactivating them during sleep.
Science, 326(5956):1079–1079, 2009.

[18] Arne Weigenand, Matthias Mölle, Friederike Werner, Thomas Martinetz,
and Lisa Marshall. Timing matters: Open-loop stimulation does not
improve overnight consolidation of word pairs in humans. European
Journal of Neuroscience, 44(6):2357–2368, 2016.

[19] Laura J Batterink, Carmen E Westerberg, and Ken A Paller. Vocabulary
learning benefits from REM after slow-wave sleep. Neurobiology of
Learning and Memory, 144:102–113, 2017.

[20] Jerome H Saltzer and Michael D Schroeder. The protection of informa-
tion in computer systems. Proceedings of the IEEE, 63(9):1278–1308,
1975.

[21] Claudia L Reardon and Shane Creado. Drug abuse in athletes. Substance
Abuse and Rehabilitation, 5:95–105, 2014.

https://media.defcon.org/DEF CON 25/DEF CON 25 presentations/DEFCON-25-Plore-Popping-a-Smart-Gun-UPDATED.pdf
https://media.defcon.org/DEF CON 25/DEF CON 25 presentations/DEFCON-25-Plore-Popping-a-Smart-Gun-UPDATED.pdf
https://media.defcon.org/DEF CON 25/DEF CON 25 presentations/DEFCON-25-Plore-Popping-a-Smart-Gun-UPDATED.pdf
https://www.blackhat.com/docs/us-17/wednesday/us-17-Rios-When-IoT-Attacks-Understanding-The-Safety-Risks-Associated-With-Connected-Devices.pdf
https://www.blackhat.com/docs/us-17/wednesday/us-17-Rios-When-IoT-Attacks-Understanding-The-Safety-Risks-Associated-With-Connected-Devices.pdf
https://www.blackhat.com/docs/us-17/wednesday/us-17-Rios-When-IoT-Attacks-Understanding-The-Safety-Risks-Associated-With-Connected-Devices.pdf
https://support.haloneuro.com/hc/en-us/articles/115010397027-Is-Halo-Sport-FDA-approved/
https://support.haloneuro.com/hc/en-us/articles/115010397027-Is-Halo-Sport-FDA-approved/
http://www.newyorker.com/tech/elements/for-the-golden-state-warriors-brain-zapping-could-provide-an-edge
http://www.newyorker.com/tech/elements/for-the-golden-state-warriors-brain-zapping-could-provide-an-edge
http://fortune.com/2015/11/17/electric-brain-training-devices-cognitive-enhancement/
http://fortune.com/2015/11/17/electric-brain-training-devices-cognitive-enhancement/

Control-hijacking Vulnerabilities in IoT Firmware:
A Brief Survey

Abhinav Mohanty∗, Islam Obaidat∗, Fadi Yilmaz∗ and Meera Sridhar∗
Software and Informations Systems, University of North Carolina at Charlotte

Email: ∗amohant1@uncc.edu, ∗iobaidat@uncc.edu, ∗fyilmaz@uncc.edu, ∗msridhar@uncc.edu

Abstract—Security issues in the Internet of Things (IoT) are
rapidly growing. While much recent research has focused on net-
work security, authentication, authorization, protocol, web and
mobile (interfaces for IoT devices) security, less attention has been
devoted to software vulnerabilities, especially in IoT firmware.
As a first step towards gathering research community attention
and developing robust defenses, we present a classification of
recently discovered control-hijacking vulnerabilities in select IoT
firmware.

I. INTRODUCTION

The number of devices in the Internet of Things (IoT) is
expected to exceed 26 billion [27] within the next four years.
Industry experts estimate that 70% of IoT devices presently on
the market are vulnerable to cyber attacks [33], and Gartner
predicts that by 2020 more than 25% of enterprise attacks will
involve exploits of IoT devices [31]. Taken together, these
statistics forecast an alarming perfect storm brewing in the
world of cyber security. With such an enormous network of
devices, many of which are likely to be deeply integrated
into the daily lives of users, and considering the complexity
of the multilayered IoT architecture, securing the IoT is one
of the most essential and yet highly challenging tasks facing
technologists today.

A large percentage of IoT security efforts focus primarily
on network and systems security solutions ([47], [42]); but
a report from NIST has shown that 77% of all reported
vulnerabilities are in software applications, not in networks
or operating systems [41]. Unfortunately, while industrial and
governmental communities are now slowly becoming more
aware that software security is a vital consideration for the
design, development, and evaluation of IoT products (e.g., IoT
security expenditures are expected to exceed $500 million this
year [31]), it is not yet sufficiently widely recognized that the
nature of many IoT security problems differs fundamentally
from conventional cyber security problems, and that critical
gaps still exist in the science of security that will impede con-
ventional software defense approaches from scaling adequately
to the expected growth of the IoT. For example:

• Low expertise: Many industrial producers of IoT soft-
ware are not software companies, and therefore lack
comprehensive training in cyber security or even foun-
dational software engineering best-practices (cf., [37]).
Additionally, typical IoT consumers also lack technical
expertise needed for specifying/enforcing policies, up-

dating device firmware frequently, and applying critical
security patches.

• Device heterogeneity: Many conventional approaches to
software security confine their attention to one hardware
architecture at a time; but IoT attacks frequently cross
platforms or abuse interactions between the many diverse
hardware elements that comprise the IoT (cf., [32], [39],
[34]).

• Light-weight architectures: Consumer-side software
protection mechanisms often draw upon the relatively
extensive computing resources of modern PCs—for ex-
ample, to implement virtual machines, hypervisors, or
intrusion detection systems. IoT software defenses require
the innovation of much lighter-weight solutions, since
they typically lack the resources necessary to sustain
these conventional, resource-heavy approaches.

Much of IoT security research ([25], [35], [23], [47]) has fo-
cused on authentication and authorization issues, light-weight
crypto systems, and security protocols, such as encrypted
communication between IoT devices and their counterparts
(hub, router, cloud, mobile app, etc.), hard-coded encryption
keys/credentials in device firmware or mobile apps, and preva-
lence of default credentials and weak passwords. Other works
have also focused on securing the cloud back-end, and web
and mobile interfaces of the device.

One of the prerequisites for building robust software defense
systems for the IoT is a comprehensive study of the IoT attack
surface. Surveys on IoT security issues prevail in the literature
([40], [43], [36], [44]), but most of them are too broad and
general.

In this paper, we focus on a very specific software-security
issue, control-flow hijacking, and present a classification of
control-hijacking vulnerabilities in IoT firmware. Control-flow
hijacking is a highly significant class of attacks in software
security, where attackers can gain control of the entire sys-
tem [46].

General purpose computing devices can be protected against
such attacks by traditional security mechanisms such as binary
randomization, memory layout randomization, stack canaries,
tainting of suspect data, forcing pages to either be writable
or executable (DEP), and Control Flow Integrity (CFI) en-
forcement(cf., [30]). However, these countermeasures typically
require high computation capabilities and memory usage, and
often rely on hardware that is unavailable to simple micro-
controllers such as a Memory Management Unit (MMU) or

execution rings that most IoT devices lack. Moreover, they
mostly use software solutions, since hardware modifications
(for example on the IA-32 architecture) are difficult and likely
to cause problems with legacy applications [30].

IoT firmware attacks and vulnerabilities remain fairly
less explored in the literature; however, vulnerabilities such
as buffer overflows [4], integer overflows [19], heap over-
flows [14] and format string [10] vulnerabilities abound in
device firmware, operating systems, and utility programs run-
ning on the device.

Although control-hijacking attacks are not widespread in
IoT yet, it is just a matter of time, when trivial bugs such as
weak or default passwords are fixed, and attackers will move
towards more sophisticated attacks such as these [24].

We hope that this small study would be the first step
towards focusing research attention and defense solutions on
this significant class of vulnerabilities.

II. CONTROL-FLOW VULNERABILITIES IN IOT FIRMWARE

Table I presents the most widespread and interesting control-
flow hijacking vulnerabilities in the recent past discovered
in IoT firmware. This section also presents more detailed
descriptions of select vulnerabilities from the table.

We use the following metrics for the characterization of
these vulnerabilities:

• Is the source code available for analysis?
• How many devices or users were affected?
• What is the architecture/OS on the device?
• Which version of the firmware or the device model was

affected?
• Was a CVE number [38] assigned to the vulnerability?
• When was the vulnerability first reported?
• What risks does the vulnerability pose? (For example,

Remote Code Execution, Denial of Service, etc.)
Foscam C1: The Foscam C1 [11] is a highly popular

IP camera designed to be accessible remotely via a web in-
terface/mobile application. In June 2017, researchers working
at Cisco Talos [5] reported numerous vulnerabilities in the
firmware version 2.52.2.37 of the product. Among these was a
stack overflow which could be triggered by a specially crafted
HTTP request (CVE-2017-2805). Once again in November
2017, the same security firm reported multiple buffer overflow
vulnerabilities in the same product which could be used for
DoS and RCE attacks. The researchers also demonstrated that
they could also spoof the video stream as well. This could
easily be used in conducting criminal activities and escaping
the aftermath.

D-Link: In July 2016, researchers at security firm Sen-
rio [9] revealed a stack buffer overflow vulnerability in the
firmware (v1.12) [1], which is common to more than 40
distinct D-Link devices [6]. According to Shodan [21], there
are 414,949 publicly accessible devices impacted by this
vulnerability.

Devil’s Ivy: On July 18 2017, security firm Senrio,
revealed a stack buffer overflow vulnerability (CVE-2017-
9765) in the implementation of the gSOAP [12] toolkit that

could be exploited to take over thousands of IoT devices
across the world; the vulnerability was termed as ’Devil’s
Ivy’ [13]. gSOAP is an open-source software development
toolkit for XML web services and generic XML data bindings.
The gSOAP tools are widely used in physical security products
to allow them to perform XML serializations efficiently with
zero-copy overhead. According to Axis [3], the market leader
in IP cameras, Devil’s Ivy is present in 249 distinct camera
models manufactured by the company.

Dnsmasq: Dnsmasq [7] is an open-source, lightweight
DNS forwarder and DHCP server for small-scale networks.
It is widely used in home networks and cloud environments
as a caching DNS stub resolver and to manage DHCP leases.
In October 2017, researchers at Google, discovered a heap-
based overflow vulnerability (CVE-2017-14491) in Dnsmasq
versions 2.70–2.77 [8]. A carefully constructed DNS request
can be used to overflow the heap and perform remote code
execution or denial of service. According to Shodan, almost
1,098,179 devices were affected by this vulnerability.

MatrixSSL: MatrixSSL [16] is an open-source TLS/SSL
implementation designed for embedded hardware environ-
ments. More than 900 products from about 50 vendors employ
MatrixSSL [45]. The implementation of parsing X.509 certifi-
cates in MatrixSSL version 3.8.7b contains several vulnera-
bilities, which include heap-based buffer overflow and integer
overflow [15]. The vulnerabilities can be exploited to achieve
remote code execution and sensitive information leakage.

Amazon Echo and Samsung Gear S3: At BlackHat
Europe 2017, security researchers Ben Seri and Gregory
Vishnepolsky disclosed numerous critical vulnerabilities in the
implementation of the Bluetooth protocol, which is widely
is used in IoT device communication. They demonstrated a
successful exploitation of buffer overflows in both the Echo
and Gear S3, and pointed out that even the devices from
top IT companies lack basic security mechanisms as Address
Space Layout Randomization (ASLR) [2], Stack Canary [29]
or NX_bit (DEP) [18].

Mirai: Mirai [17] made its first appearance in September
2016, with dramatic flair. After flooding a prominent security
journalist’s website with traffic from a massive botnet created
using vulnerable Internet of Things devices, it managed to
make much of the Internet unavailable for millions of peo-
ple by overwhelming Dyn [20], a company that provides a
significant portion of the Internet backbone for United States.
Surprisingly, a month later in October 2016, researchers at
security firm Invincea Labs, discovered multiple vulnerabilities
in the code of Mirai itself, one of which was a stack buffer
overflow. The vulnerability could be exploited to crash the
process and stop an infected device from attacking.

III. RELATED WORK

Related work on control-hijacking defenses for traditional
systems is vast; we omit their discussion here due to space
constraints.

Costin et al. [28] have conducted a large-scale analysis of
embedded firmware. However, their analysis does not cover

Table I
CONTROL FLOW HIJACKING ATTACKS IN IOT SPACE

D
ev

ic
e/

A
PI

O
pe

n
So

ur
ce

#
of

U
se

rs
/D

ev
ic

es
A

ff
ec

te
d

A
rc

hi
te

ct
ur

e/
O

S
A

ff
ec

te
d

ve
rs

io
n/

m
od

el
#C

V
E

D
at

e
of

R
ep

or
t

R
IS

K
S

D
-L

in
k

Y
es

∼
41

49
49

de
vi

ce
s

M
IP

S
ar

ch
ite

ct
ur

e
39

m
od

el
s

C
V

E
-2

01
6-

65
63

06
/0

8/
20

16
R

C
E

,D
O

S
M

ir
ai

Y
es

N
/A

E
m

be
dd

ed
L

in
ux

M
ir

ai
So

ur
ce

C
od

e
N

/A
10

/2
8/

20
16

M
at

ri
xS

SL
Y

es
>9

00
pr

od
uc

ts
>5

0
ve

nd
or

s
E

m
be

dd
ed

an
d

Io
T

sy
st

em
s

<v
er

si
on

3.
8.

5
C

V
E

-2
01

6-
68

90
10

/1
1/

20
16

R
C

E

Fo
sc

am
C

1
Y

es
>5

00
,0

00
us

er
s

E
m

be
dd

ed
L

in
ux

Sy
st

em
f/

w
:

v1
.9

.3
.1

7
A

pp
f/

w
:

v2
.5

2.
2.

37
W

eb
:

v2
.0

.1
.1

Pl
ug

-I
n:

v3
.3

.0
.5

C
V

E
-2

01
7-

28
05

C
V

E
-2

01
7-

28
30

–2
83

1
C

V
E

-2
01

7-
28

51
6/

19
/2

01
7

R
C

E
,D

oS
C

om
pl

et
e

Ta
ke

ov
er

D
ev

il’
s

Iv
y

Y
es

>m
ill

io
n

de
vi

ce
s

24
9

un
iq

ue
A

xi
s

ca
m

er
as

>3
4

co
m

pa
ni

es
C

V
E

-2
01

7-
97

65
06

/2
1/

20
17

R
C

E
,D

oS
C

om
pl

et
e

Ta
ke

ov
er

M
at

ri
xS

SL
Y

es
>9

00
pr

od
uc

ts
>5

0
ve

nd
or

s
E

m
be

dd
ed

an
d

Io
T

sy
st

em
s

ve
rs

io
n

3.
8.

7b
C

V
E

-2
01

7-
27

80
–2

78
2

6/
22

/2
01

7
R

C
E

Z
m

od
o_

G
re

et
N

o
>1

00
,0

00
B

us
yB

ox
,U

A
R

T
08

/1
1/

20
17

R
C

E
,D

oS
C

on
nM

an
Y

es
us

ag
e

un
kn

ow
n

E
m

be
dd

ed
L

in
ux

<v
1.

34
of

C
on

nM
an

C
V

E
-2

01
7-

12
86

5
08

/1
5/

20
17

R
C

E
,D

oS

D
ns

m
as

q
Y

es
>m

ill
io

n
de

vi
ce

s
L

in
ux

,A
nd

ro
id

,I
oT

<v
2.

68
of

D
ns

m
as

q
C

V
E

-2
01

7-
14

49
1–

14
49

3
C

V
E

-2
01

7-
14

49
6

C
V

E
-2

01
7-

13
70

4
10

/0
2/

20
17

R
C

E
,D

oS

Fo
sc

am
C

1
Y

es
>5

00
,0

00
us

er
s

E
m

be
dd

ed
L

in
ux

Sy
st

em
f/

w
:

v1
.9

.3
.1

8
A

pp
f/

w
:

v2
.5

2.
2.

43
Pl

ug
-I

n:
v3

.3
.0

.2
6

C
V

E
-2

01
7-

28
54

–2
85

7
C

V
E

-2
01

7-
28

76
C

V
E

-2
01

7-
28

78
–2

87
9

11
/1

3/
20

17
R

C
E

,D
oS

C
om

pl
et

e
Ta

ke
ov

er

A
m

az
on

E
ch

o
Y

es
>2

0
m

ill
io

n
Fi

re
O

S
(v

ia
bl

ue
to

ot
h)

K
er

ne
l

2.
6.

37
(!

)
A

rm
32

bi
t

N
/A

12
/0

6/
20

17
R

C
E

,C
om

pl
et

e
Ta

ke
ov

er

Sa
m

su
ng

G
ea

r
S3

Y
es

>1
00

m
ill

io
n

Ti
ze

n
O

S
(v

ia
bl

ue
to

ot
h)

K
er

ne
l

3.
18

.1
4

A
rm

64
bi

t
N

/A
12

/0
6/

20
17

R
C

E
,D

oS

A
rd

ui
no

Y
un

Y
es

L
in

ux
ba

se
d

O
S

A
T

m
eg

a3
2u

4
ch

ip
A

th
er

os
A

R
93

31
ch

ip
N

/A
05

/1
6/

20
16

R
C

E
,D

oS

control-hijacking attacks. Chen et al. [26] have presented
Firmadyne, which is an automated dynamic analysis tool
to discover vulnerabilities in firmware. However, their tool
finds overflow vulnerabilities through the web interface of the
firmware, which does not guarantee complete code coverage.
Abera et al. [22] present C-FLAT, which provides control-flow
attestation in embedded systems firmware. While C-FLAT is
a promising solution, it has not been tested extensively yet
(only two cyber physical systems).

Further investigation might be in order, to determine
whether these related works on control-hijack defenses for
embedded systems can be readily adpated to IoT firmware. The
enormous heterogeneity in the IoT firmware space, combined
with the proprietary nature of the firmware and reluctance
on the part of IoT vendors to incorporate security, might be
substantial issues to consider in this process.

IV. CONCLUSION

We present a classification of recently discovered control-
hijacking vulnerabilities in select IoT firmware, using metrics
such as source code availability, architecture, risks associated
and more. We hope that this study would serve as a first step
towards gathering research community attention and develop-
ing robust defenses for IoT software security.

ACKNOWLEDGEMENTS

This research was supported by the NSF CRII award
#1566321.

REFERENCES

[1] 400,000 publicly available IoT devices vulnerable to single flaw. https:
//tinyurl.com/ycb2p7q4.

[2] Address Space Layout Random Randomization. https://tinyurl.com/
zb6p2vm.

[3] Axis Communication. https://www.axis.com/ae/en.
[4] Buffer Overflows. https://www.owasp.org/index.php/Buffer_Overflow.
[5] Cisco Talos - Meet Cisco Talos, the industry-leading threat intelligence

group fighting the good fight. https://tinyurl.com/y8ha6mf9.
[6] D-link. http://www.dlink.co.in/products/category/?cid=3.
[7] Dnsmasq. http://www.thekelleys.org.uk/dnsmasq/doc.html.
[8] Dnsmasq: Multiple critical and important vulnerabilities. https://access.

redhat.com/security/vulnerabilities/3199382.
[9] Enterprise Security for IoT. http://senr.io/.

[10] Format String Attack. https://tinyurl.com/6t5qwph.
[11] FOSCAM Home Security. https://foscam.com/C1.html.
[12] gSOAP. https://www.genivia.com/dev.html.
[13] Hack Brief: ’Devil’s Ivy’ vulnerability could afflict millions of IoT

devices. https://www.wired.com/story/devils-ivy-iot-vulnerability/.
[14] Heap Overflow: Vulnerability and heap internals explained. https:

//tinyurl.com/ybeqsqwe. Accessed: 2018-01-24.
[15] Inside secure MatrixSSL x509 certificate SubjectDomainPolicy remote

code execution vulnerability. https://tinyurl.com/yav6dda4.
[16] Matrixssl. www.matrixssl.org.
[17] Mirai: what you need to know about the botnet behind recent major

DDoS attacks . https://tinyurl.com/yas5p757.
[18] NX bit. http://index-of.es/EBooks/NX-bit.pdf. Accessed: 2018-01-24.
[19] OWASP periodic table of vulnerabilities - Integer Overflow/Underflow.

https://tinyurl.com/ycfjrg9l.
[20] Rethink DNS. https://dyn.com/.
[21] Shodan, The search engine for the Internet of Things. https://www.

shodan.io/.

[22] T. Abera, N. Asokan, L. Davi, J. Ekberg, T. Nyman, A. Paverd,
A. Sadeghi, and G. Tsudik. C-FLAT: Control-flow attestation for
embedded systems software. In Proceedings of the 23rd ACM SIGSAC
Conference on Computer and Communications Security (CCS), pages
743–754, 2016.

[23] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash. Internet of Things: A survey on enabling technologies,
protocols, and applications. IEEE Communications Surveys Tutorials,
17(4):2347–2376, 2015.

[24] Altium Designer. Internet of Things security vulnerabilities: All about
buffer overflow. https://tinyurl.com/ybfdaob3. Accessed: 2018-01-24.

[25] L. Atzori, A. Iera, and G. Morabito. The Internet of Things: A survey.
Computer Networks, 54(15):2787 – 2805, 2010.

[26] D. D. Chen, M. Egele, M. Woo, and D. Brumley. Towards automated
dynamic analysis for linux-based embedded firmware. In Proceedings
of the 23rd Annual Network and Distributed System Security Symposium
(NDSS), 2016.

[27] Cisco. Cisco visual networking index predicts near-tripling of IP traffic
by 2020. https://tinyurl.com/mp8r9kw.

[28] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti. A large-scale
analysis of the security of embedded firmwares. In Proceedings of the
23rd USENIX Security Symposium (USENIX), pages 95–110, 2014.

[29] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, and Q. Zhang. Stackguard: Automatic adaptive detection and
prevention of buffer-overflow attacks. In Proceedings of the 7th USENIX
Security Symposium, 1998.

[30] A. Francillon, D. Perito, and C. Castelluccia. Defending embedded
systems against control flow attacks. In Proceedings of the First ACM
Workshop on Secure Execution of Untrusted Code, pages 19–26, 2009.

[31] Garther. Forecast: IoT security, worldwide, 2016. http://www.gartner.
com/newsroom/id/3291817, 2016.

[32] Gartner. Gartner says potential size and diversity of the Internet
of Things mask immediate opportunities. http://www.gartner.com/
newsroom/id/2564916, 2013.

[33] Hewlett-Packard. Internet of Things research study - 2015 report. https:
//tinyurl.com/zv2bdkm, 2015.

[34] S. Koegler. IoT device diversity, data volumes drive management
platform adoption. https://tinyurl.com/yangfkle, 2015.

[35] J. Y. Lee, W. C. Lin, and Y. H. Huang. A lightweight authentication
protocol for Internet of Things. In Proceedings of the 3rd International
Symposium on Next-Generation Electronics (ISNE), pages 1–2, 2014.

[36] Lieberman Software Corporation. IoT security survey. http://go.liebsoft.
com/IoT-Security-Survey, January 2017.

[37] McAfee. McAfee labs 2016 threats predictions. https://tinyurl.com/
y9vqs44h, September 2016. Retrieved 10-1-2016.

[38] MITRE. Common vulnerabilities and exposures database. https://cve.
mitre.org/. Accessed: 2018-01-24.

[39] B. O’Donnell. Commentary: Tech device diversity set to explode with
IoT. https://tinyurl.com/y6vemmk4.

[40] A. Oracevic, S. Dilek, and S. Ozdemir. Security in Internet of Things: A
survey. In Proceedings of the 5th International Symposium on Networks,
Computers and Communications (ISNCC), pages 1–6, May 2017.

[41] G. A. W. Paul E. Black, Larry Feldman. Dramatically reducing software
vulnerabilities. https://tinyurl.com/ybqtc7fj, January 2017.

[42] R. Roman, P. Najera, and J. Lopez. Securing the Internet of Things.
Computer, 44(9):51–58, Sept 2011.

[43] M. Sain, Y. J. Kang, and H. J. Lee. Survey on security in Internet
of Things: State of the art and challenges. In Proceedings of the
19th International Conference on Advanced Communication Technology
(ICACT), pages 699–704, Feb 2017.

[44] SANS Institute. Securing the Internet of Things survey. https://tinyurl.
com/pv4oaa2, 2017.

[45] SEC Consult. House of keys: Industry-wide HTTPS certificate and SSH
key reuse endangers millions of devices worldwide. https://tinyurl.com/
ycn3rwyl, 2015.

[46] H. Shacham. The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86). In Proceedings of the 14th ACM
Conference on Computer and Communications Security, CCS ’07, pages
552–561, New York, NY, USA, 2007. ACM.

[47] S. Sicari, A. Rizzardi, L. Grieco, and A. Coen-Porisini. Security, privacy
and trust in Internet of Things: The road ahead. Computer Networks,
76:146–164, 2015.

https://tinyurl.com/ycb2p7q4
https://tinyurl.com/ycb2p7q4
https://tinyurl.com/zb6p2vm
https://tinyurl.com/zb6p2vm
https://www.axis.com/ae/en
https://www.owasp.org/index.php/Buffer_Overflow
https://tinyurl.com/y8ha6mf9
http://www.dlink.co.in/products/category/?cid=3
http://www.thekelleys.org.uk/dnsmasq/doc.html
https://access.redhat.com/security/vulnerabilities/3199382
https://access.redhat.com/security/vulnerabilities/3199382
http://senr.io/
https://tinyurl.com/6t5qwph
https://foscam.com/C1.html
https://www.genivia.com/dev.html
https://www.wired.com/story/devils-ivy-iot-vulnerability/
https://tinyurl.com/ybeqsqwe
https://tinyurl.com/ybeqsqwe
https://tinyurl.com/yav6dda4
www.matrixssl.org
https://tinyurl.com/yas5p757
http://index-of.es/EBooks/NX-bit.pdf
https://tinyurl.com/ycfjrg9l
https://dyn.com/
https://www.shodan.io/
https://www.shodan.io/
https://tinyurl.com/ybfdaob3
https://tinyurl.com/mp8r9kw
http://www.gartner.com/newsroom/id/3291817
http://www.gartner.com/newsroom/id/3291817
http://www.gartner.com/newsroom/id/2564916
http://www.gartner.com/newsroom/id/2564916
https://tinyurl.com/zv2bdkm
https://tinyurl.com/zv2bdkm
https://tinyurl.com/yangfkle
http://go.liebsoft.com/IoT-Security-Survey
http://go.liebsoft.com/IoT-Security-Survey
https://tinyurl.com/y9vqs44h
https://tinyurl.com/y9vqs44h
https://cve.mitre.org/
https://cve.mitre.org/
https://tinyurl.com/y6vemmk4
https://tinyurl.com/ybqtc7fj
https://tinyurl.com/pv4oaa2
https://tinyurl.com/pv4oaa2
https://tinyurl.com/ycn3rwyl
https://tinyurl.com/ycn3rwyl

SDN-based In-network Honeypot: Preemptively
Disrupt and Mislead Attacks in IoT Networks

Hui Lin
Computer Science and Engineering Department

University of Nevada at Reno
Reno, NV, USA
hlin2@unr.edu

Abstract—Detecting cyber attacks in the network environ-
ments used by Internet-of-things (IoT) and preventing them
from causing physical perturbations play an important role in
delivering dependable services. To achieve this goal, we propose
in-network Honeypot based on Software-Defined Networking
(SDN) to disrupt and mislead adversaries into exposures while
they are in an early stage of preparing an attack. Different from
traditional Honeypot requiring dedicated hardware setup, the
in-network Honeypot directly reroutes traffic from suspicious
nodes and intelligently spoofs the network traffic to them by
adding misleading information into normal traffic. Preliminary
evaluations on real networks demonstrate that the in-network
Honeypot can have little impact on the performance of IoT
networks.

Index Terms—IoT, Software-Defined Networking, Honeypot

I. INTRODUCTION
Many critical infrastructures, e.g., smart meters and smart

homes, have used Internet-of-things (IoT) to monitor and
control physical processes. Detecting cyber attacks in the
IoT network environment and preventing them from causing
physical perturbations play an important role in delivering
dependable services. Based on historical incidents in industrial
control systems, “remote insider” attacks can become a big
threat to IoT networks [1]. After penetrating into the IoT
networks, adversaries stay in a preparation stage, during which
they use the existing network traffic to study computing con-
text and collect information related to the physical processes.
With the help of collected information, adversaries can develop
and execute attack concept of operations by crafting malicious
commands in legitimate formats without raising anomaly alerts
at network levels.

Current detection approaches for IoT networks are pas-
sive [2]. Those approaches rely on anomaly patterns of
communication networks after adversaries perform malicious
activities, e.g., propagating malware, issuing malicious com-
mands [3]. The communication nodes in an IoT networks are
used to operate physical processes, e.g., opening or closing
a valve, adjusting room temperature. After adversaries inject
malicious activities into IoT networks, the impact of attacks
can quickly propagate through underneath physical processes
over a wide geographic area [4]. Consequently, even though
some passive detection approaches can identify malicious
activities, it is very challenging to prevent physical damage.

We argue that preemptive approaches, such as Honeypot
or Honeynet, which can expose adversaries at an early stage
are effective ways to prevent damage caused by attacks. In

recent years, multiple projects use traditional Honeypot for
cyber-physical industrial control systems, to attract adversaries
and trace their activities [5] [6]. However, it is challenging to
apply traditional Honeypot into IoT networks, due to three
reasons. First, IoT networks can contain a large number of
communication nodes, which makes it challenging to mimic
the network of the similar size. Second, IoT network has a very
dynamic feature; the participating nodes and their connections
can experience fast changes. Once a Honeypot is built, it is
difficult to update its implementation according to run-time
changes. Third, traditional Honeypots lack the support for
constructing meaningful application-layer payloads, e.g., mea-
surements exchanged between communication nodes in IoT
networks. Randomly generated measurements communicated
in Honeypot can reveal the presence of a bogus environment
to adversaries.

Compared to traditional Honeypots, we propose in this
paper an in-network Honeypot by using traffic-manipulation
capability enabled by Software-Defined Networking (SDN).
The in-network Honeypot does not require setting up a dedi-
cated network environment; it directly reroutes the traffic from
suspicious nodes identified at run time to an SDN controller,
which effectively quarantines the suspicious nodes from other
communication nodes. The SDN controller spoofs network
communications, which are used to interact with suspicious
nodes, on behalf of nonexistent nodes, which we refer as
phantom nodes. There is no dedicated hardware or software re-
sources allocated for the phantom nodes; their existence, e.g.,
the IP addresses, are only reflected on spoofed packets issued
from the SDN controller to the suspicious nodes. Furthermore,
we include in the spoofed traffic misleading information, such
as vulnerability of certain physical processes to mislead adver-
saries into targeting on phantom nodes to perform malicious
activities. Consequently, the in-network Honeypot can detect
adversaries’ malicious activities in a quarantined environment
without causing real physical disruptions of the protected IoT
networks.

II. SYSTEM ASSUMPTION AND ATTACK MODEL
In this paper, we consider IoT networks which rely on IP-

based networks for communications. As shown in Figure 1,
communication nodes exchange information about underneath
physical processes, such as thermostats or smart meters. There
are two common operations performed in IoT networks: con-
trol operations used to configure or operate physical processes

Fig. 1. The architecture of in-network Honeypot for IoT.

and periodic polling operations used to collect analog mea-
surements indicating the state of the physical processes.

We consider the “remote insider” threat model in this paper.
First, we assume that adversaries can penetrate communication
nodes in IoT networks from public networks, which make
adversaries insiders. To become insiders, adversaries can ex-
ploit vulnerabilities in employee’s devices, e.g., laptops, smart
phones, or USB drives, that are connected to the IoT network.
Second, we assume that adversaries are “remote” (i.e., not an
expert) to the configuration of IoT networks as well as the
characteristics of underneath physical processes. Under these
assumptions, adversaries can monitor information exchanged
over IoT networks and thus obtain the knowledge on physical
processes to prepare for malicious operations.

We assume that the IoT networks under protections can
support SDN-enabled switches and the functionality of SDN
controlling plane is trusted. SDN is a new network paradigm
whose key feature is the separation of the control plane and
the data plane [7]. In SDN, network switches are simple
forwarding devices, whose forwarding rules can be dynam-
ically configured by a central controller. In recent years, many
telecommunication companies, e.g., Huawei, began integrating
SDN into their core wireless networks [8]. In the survey shown
in [9], Bera et al. has presented the opportunities for SDN
to address critical challenges in IoT, e.g., dynamic network
management, resource allocations, and resilience. Even though
SDN can facilitate the implementation of the in-network
Honeypot, the concept of spoofing network traffic to disrupt
and mislead adversaries is not restricted by SDN but can be
implemented by any traffic manipulation techniques.

III. ARCHITECTURE OF IN-NETWORK HONEYPOT

We present the overall design of the in-network Honeypot in
Figure 1, whose implementation relies on SDN. An SDN con-
troller can observe all communication going through network
switches under its control and use the global knowledge of a
communication network to make a traffic-management deci-
sion that can achieve optimal network performance, resource
utilization, or reliability. The proposed in-network Honeypot,
however, is to use the knowledge obtained by the SDN
controller and its programmable capability to achieve two

objectives: (1) quarantine suspicious or potential malicious
nodes and (2) mislead adversaries targeting on nonexistent
communication nodes (i.e., phantom nodes). Achieving these
two objectives, we can detect adversaries while they are
preparing attacks and prevent them from causing damage to
physical processes.
A. Quarantine suspicious nodes

We assume that existing IoT networks have intrusion de-
tection systems (IDS) to raise alerts on suspicious activities
from communication nodes. After IDS identifies suspicious
nodes, the in-network Honeypot uses SDN controllers to stop
forwarding the traffic from the suspicious nodes to other
communication nodes. In other words, the network traffic
from the suspicious nodes cannot reach any communication
nodes, which make them quarantined from the IoT networks.
Regarding all network traffic from the suspicious nodes, the
SDN controller responds with spoofed information on behalf
of the destination nodes. Consequently, the suspicious nodes
communicate with phantom nodes spoofed by the SDN con-
troller with no attachment to physical machines or software
processes.

B. Spoof communication

It is critical for the in-network Honeypot to spoof commu-
nication that can mimic the real network traffic, which can
maintain highly active interactions between phantom nodes
and suspicious nodes. Based on these interactions, the in-
network Honeypot can collect more information about those
suspicious nodes to make a trustworthy decision.

We spoof communications by adding variations into normal
communication patterns. In addition, we include some mis-
leading information in the variations to mislead adversaries
into targeting phantom nodes instead of real communication
nodes. Note that an SDN controller can observe all traffic
going through the switches under its control. We can integrate
into the SDN controller anomaly-based intrusion detection
techniques to build a normal pattern of each communication
node.

As shown in Figure 1, the in-network Honeypot needs to
construct contents at both network layer and application layer
to spoof network packets on behalf of phantom nodes. We

propose using different approaches to construct contents, i.e.,
using statistic models for network layer contents and using
physical models for application layer contents.
Construct contents at network layer

To construct contents at network layers, we first build
statistic models that can classify communication nodes based
on their network-layer characteristics. The example of these
characteristics includes the range of IP-addresses, the length
of network packets, the latency between different types of
network packets. Because many physical processes associated
with communication nodes run fixed operations and follow de-
terministic patterns, the in-network Honeypot can use network
traffic observed at the SDN controller to fingerprint physical
processes and classify network communications associated
with them [10]. The advantage of using SDN controllers is
that the in-network Honeypot does not need to interfere the
normal physical processes but to rely on observed network
traffic to build statistic models. Then at runtime, the in-network
Honeypot creates contents by following these statistic models.
Construct contents at application layer

In order to prevent adversaries from disrupting underneath
physical processes, we construct contents at the application
layer to (1) mimic the state of physical processes and (2)
mislead adversaries into disrupting the nonexistent physical
processes controlled by phantom nodes.

Fig. 2. Procedure to construct contents at application layer.

In Figure 2, we present the high-level procedure to construct
contents at the application layer. We use a vector x to represent
the state of physical processes managed by the IoT network.
Through the traffic collected by the SDN controller, we first
monitor those state variables and model their statistic charac-
teristics (in “statistic model”), such as the variation range of
each state determined by its lower bound and upper bound (i.e.,
xl
i and xu

i in the figure). In the next step, we include the state
variation range in an optimization problem in the “misleading
model.” The solution to this problem is “phantom state”, which
represents the state of nonexistent physical processes that are
controlled by phantom nodes. In other words, phantom states
are the contents at the application layer of the network packets
issued from the phantom nodes.

Assume that we use function f(x, y) to represent decision
procedure of adversaries to cause physical damage, i.e., mc,
based on the observed system state and phantom state. In
the “misleading model,” we set mc as the operations that
can cause significant disruption on the phantom state but
little impact on real physical processes. Consequently, the

solutions to the optimization problem determine the phantom
states that can mislead adversaries into designing ineffective
attack strategies, which introduce no physical damage. Note
that the optimization makes both physical and phantom states
subject to the constraints of state variation range observed at
runtime. This constraint makes the resulting phantom state
follow normal variations and avoid adversaries’ suspicions.
Also, because physical processes need to follow physical laws,
we add the constraint to make physical and phantom state
consistent with the physical laws in a mathematical expression,
i.e., g(x, y) = 0 in the figure. Because this optimization
problem mimics adversaries’ decision procedure, solving the
problem requires similar computation complexity as required
to prepare attacks.
C. Handle false detection

If IDS makes a false positive detection and a suspicious
node is mistakenly quarantined, the in-network Honeypot can
use the SDN controller to restore its communication path. Ad-
ditionally, the SDN controller can profile the physical changes
initiated by the suspicious nodes. After restoring communica-
tions for suspicious nodes, the in-network Honeypot can use
the profile as reference points to update the physical process,
to avoid repeated operations from the suspicious nodes. To
profile the physical changes initiated by the suspicious nodes
at runtime and without causing real physical changes, we
can use simulations, which represent the mathematical models
of the physical process, to estimate the consequences of the
commands and record them.

In addition to handling the false positive detection after their
occurrence, the in-network Honeypot can reduce the number
of false detection in advance by increasing the accuracy
of anomaly-based IDS. Anomaly-based IDSes raise an alert
when they observe any network traffic that deviates from
normal patterns. They suffer from two drawbacks: (1) raising
false positive alerts on anomaly not due to attacks and (2)
introducing false negative detection if the IDSes build the
normal patterns based on the network traffic that has already
been contaminated by malicious activities [11]. With the help
of the in-network Honeypot, we can remedy the negative
impacts caused by these two drawbacks. When the in-network
Honeypot identifies a suspicious node as malicious, it can use
the interactions with them to build the model of adversaries
in parallel with the model of normal traffic. The adversaries’
model can help to (1) reduce false positive detection by
distinguishing attacks from anomalies and (2) reduce false
negative detection by removing malicious traffic of suspicious
nodes from the model to build the normal traffic patterns.

IV. EVALUATION
A. Environment

We used the GENI testbed, a nationwide network exper-
iment platform, to construct IoT networks with a dumbbell
topology shown in Figure 3 [12]. In the GENI testbed, we
used real SDN-enabled hardware switches to connect virtual
machines that simulate communication nodes. Because in
GENI testbed we can use virtual machines physically located

in three different areas, the evaluations can reflect the perfor-
mance of wide area communications in IoT networks. We also
constructed networks of three different sizes by changing the
number of communication nodes connected to switches. When
indicating a network, we add the number of nodes with the
name of the network topology in parentheses.

We used DNP3 as the network protocol to exchange infor-
mation [13]. Although the DNP3 protocol is mainly used in
electric and water companies, its complex structure and rich
data formats can cover wide varieties of measurements and
operations used in different IoT networks.

Fig. 3. Dumbbell topology to simulate IoT networks.

We implemented the in-network Honeypot in ONOS, an
open-source network operating systems commonly used as
SDN controllers in commercial networks [14]. Because we
used DNP3 as the protocol for communications, we included
in ONOS an encoder to spoof DNP3 packets.

B. Evaluation results

In this section, we evaluate the impact of spoofing network
traffic on the performance of IoT networks. Specifically, we
spoofed the traffic of 80% computing nodes to simulate a worst
case scenario. As shown in Figure 4, we use two performance
metrics for evaluations, i.e., the round trip times (RTT) and
the throughput of the SDN controller.

Fig. 4. Performance evaluations on spoofing network traffic (with 99%
confidence interval).

On the primary y-axis, we compare the RTT when networks
uses the in-network Honeypot to spoof traffic (“spoof RTT”)
to “normal RTT.” From the figure, we can observe that the
change of RTT is within 10% (less than 10 milliseconds). Con-
sequently, it can be challenging for adversaries to distinguish
the spoofed traffic from the real one based on the observed
variations in RTTs.

On the secondary y-axis, we compare the throughput of the
SDN controller spoofing network traffic (“spoof throughput”)
with the throughput when it directly forwards network traffic
(“normal throughput”). Compared to the “normal throughput,”
we can see that there was an approximately 30% decrease
on average; throughput of spoofing network packets varied
between 2.8 Mbps and 3.5 Mbps. For a DNP3 packet of
1 kilobyte (KB), which can contain more than 200 32-bit

measurements, the SDN controller can spoof more than 300
packets per second.

V. CONCLUSIONS
In this paper, we propose an in-network Honeypot, which

reroutes network traffic from suspicious nodes to an SDN con-
troller to quarantine their communications in an IoT network.
After quarantining the suspicious nodes, the SDN controller
spoofs network communication with suspicious nodes on
behalf of nonexistent phantom nodes. We use both statistic
model and physical model to construct contents of the spoofed
packets. The spoofed packets can mislead adversaries into
targeting phantom nodes and thus to prevent potential physical
damage from happening on real communication nodes and
the underneath physical processes. Preliminary evaluations on
real SDN networks demonstrate that deploying in-network
Honeypot introduces small overhead on normal network com-
munications.

REFERENCES

[1] R. M. Lee, M. J. Assante, and T. Conway, “Analysis of the cyber attack
on the Ukrainian power grid,” SANS E-ISAC, Tech. Rep., March 2016.

[2] A. A. Gendreau and M. Moorman, “Survey of intrusion detection
systems towards an end to end secure internet of things,” in 2016 IEEE
4th International Conference on Future Internet of Things and Cloud
(FiCloud), Aug 2016, pp. 84–90.

[3] E. Hodo, X. Bellekens, A. Hamilton, P. L. Dubouilh, E. Iorkyase,
C. Tachtatzis, and R. Atkinson, “Threat analysis of iot networks using ar-
tificial neural network intrusion detection system,” in 2016 International
Symposium on Networks, Computers and Communications (ISNCC),
May 2016, pp. 1–6.

[4] E. Ronen, A. Shamir, A. O. Weingarten, and C. OFlynn, “Iot goes
nuclear: Creating a zigbee chain reaction,” in 2017 IEEE Symposium
on Security and Privacy (SP), May 2017, pp. 195–212.

[5] K. Wilhoit and S. Hilt, “The GasPot experiment: Unexamined perils
in using gas tank monitoring systems,” A TrendLabs Research Paper,
Trend Micro Inc.

[6] D. I. Buza, F. Juhász, G. Miru, M. Félegyházi, and T. Holczer, “Cryplh:
Protecting smart energy systems from targeted attacks with a plc
honeypot,” in International Workshop on Smart Grid Security. Springer,
2014, pp. 181–192.

[7] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford,
G. Xie, H. Yan, J. Zhan, and H. Zhang, “A clean slate 4D approach
to network control and management,” SIGCOMM Comput. Commun.
Rev., vol. 35, no. 5, 2005.

[8] R. Jack, “Achieving next generation oss with the tmf zoom, onos and
huawei,” https://onosproject.org/tag/huawei/.

[9] S. Bera, S. Misra, and A. V. Vasilakos, “Software-defined networking
for internet of things: A survey,” IEEE Internet of Things Journal, vol. 4,
no. 6, pp. 1994–2008, Dec 2017.

[10] D. Formby, P. Srinivasan, A. Leonard, J. Rogers, and R. Beyah,
“Who’s in control of your control system? Device fingerprinting for
cyber-physical systems,” in Network and Distributed System Security
Symposium (NDSS), 2016.

[11] R. Sommer and V. Paxson, “Outside the closed world: On using machine
learning for network intrusion detection,” in 2010 IEEE Symposium on
Security and Privacy, May 2010, pp. 305–316.

[12] “Geni (global environment for network innovations) exploring networks
of the future,” Raytheon BBN Technologies, www.geni.net.

[13] “IEEE standard for electric power systems communications-distributed
network protocol (dnp3),” IEEE Std 1815-2012 (Revision of IEEE Std
1815-2010), pp. 1–821, Oct 2012.

[14] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “Onos: towards
an open, distributed sdn os,” in Proceedings of the third workshop on
Hot topics in software defined networking. ACM, 2014, pp. 1–6.

	Introduction
	Causal Inference Methodology
	Mapping the IoT Environment
	Measuring Expected Behaviors
	Detecting Causality

	Experimentation and Early Results
	Test Bed
	Power Analyses
	Electromagnetic Emanations
	Scenarios

	Limitations and Future Work
	Conclusion
	References
	References
	Introduction
	Control-Flow Vulnerabilities in IoT Firmware
	Related Work
	Conclusion
	References

